Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Натуральный триэдр траектории.




Прежде всего несколько разовьем ранее сказанное о вектор-функции и ее производной. Пусть - непрерывная вектор-функ­ция скалярного аргумента u, геометрически изображаемая своим годографом, т. е. траекторией конца N векторов при непрерывно изменяющихся значениях аргумента u, и начало этих векторов откладывается от некоторого полюса О (Рис 19). Производная от вектор – функции по скалярному аргументу u, определяется как предел

(2.1)

и представляет вектор, имеющий направление каса­тельной к годографу, проведенной в сторону, соот­ветствующую возрастанию аргумента u. Вектор характеризует быстроту изменения по величине и направлению век­тора с изменением аргумента u.

Величину или модуль производной будем обозначать через . Модуль произ­водной вектора не равен значению производной его модуля.

(2.2)

При дифференцировании векторов сохраняются те же правила, что и при дифференцировании функций:

производная геометрической суммы (разности) вектор–функции равна геометрической сумме (разности) производных. Точно так же сохраняется и правило дифференцирования произведения скалярной функции X (u) на вектор :

Понятие вектор – функции и её производной облегчают рассмотрение основных геометрических свойств траектории, необходимых для развития представления о скорости и ускорения точки. Рассмотрим некоторую кривую, лежащую (вообще говоря) не в одной плоскости. Возьмём на этой кривой три точки М1, М2 и М. Проведём через эти три точки плоскость (предполагается, что три точки не лежат на одной прямой). Устремим точки М1 и М2 к точке М. Проведённая плоскость при этом будет каким – то образом поворачиваться и займёт предельное положения, когда все три точки сольются. Это предельное положение назовём соприкасающейся плоскостью (СП), в которой проведём касательную к кривой в точке М. Орт касательной в точке М обозначим . Проведем в точке М плоскость перпендикулярную к орту , эту плоскость назовём нормальной плоскостью (НП) кривой. Любая прямая, проведенная в этой плоскости через точку М, будет перпендикулярна к , т. е. будет нормалью кривой; линия пересе­чения нормальной и соприкасающейся плоскостей определяет глав­ную нормаль кривой. Иными словами, главной нормалью называется нормаль, лежащая в соприкасающейся плоскости. Нормаль, перпен­дикулярная к главной нормали, называется бинормалью кривой. Если, в частности, кривая — плоская, то соприкасающейся пло­скостью будет плоскость, в которой расположена кривая, а главной нормалью — нормаль кривой, лежащая в этой плоскости.

Совокупность трех взаимно перпендикулярных осей: 1) касатель­ной, направленной в сторону возрастания дуги, 2) главной нормали, направленной в сторону вогнутости кривой, и 3) бинормали, перпендикулярной к касательной и главной нормали образует так называемый натуральней триэдр кривой.

Единичные векторы этих осей обозначим соответственно через . Найдем выражения этих трех единичных векторов натураль­ного триэдра через вектор-радиус точки на кривой, заданный как вектор-функция дуги: . Найдем прежде всего . По определению векторной производной вектор направлен по касательной к годографу вектора в сторону возрастания дуги S. С другой стороны, численная величина производной равна . Таким образом, векторная производная представляет искомый единичный вектор касательной

(2.3)

Для определения единичного вектора главной нормали обратимся к рис. 20 и рис. 21.

 
Рассмотрим равнобедренный треугольник, обра­зованный векторами . Если точка М1 взята на весьма малом расстоянии ΔS от точки М, то угол α (угол смежности) будет также мал и вектор , с тем меньшей ошибкой, чем меньше ΔS, можно считать перпендикулярным к и, следова­тельно, параллельным вектору нормали , лежащему с в одной и той же плоскости. По абсолютной величине (как основание равнобед­ренного треугольника с малым углом α при вершине и боковыми сторонами, равными единице) будет равен Отсюда найдем (с точностью до малых высших порядков): или . Будем приближать ΔS к нулю, тогда точка M1 будет стремиться к М, единичный вектор нормали — к искомому единичному вектору , и мы будем иметь: . Второй множитель определяет кривизну кривой в данной точке, величина обратная кривизне – ρ называется радиусом кривизны

Таким образом, имеем следующее выражение орта главной нормали . Или в более привычной записи

(2.4)

Скорость точки.

Пусть за время точка пройдет по заданной траектории путь , тогда отношение характеризует среднюю быстроту изменения пути со временем за интервал или среднюю скорость движения точки за этот интервал. Предел средней скорости за интервал , при , называется скоростью в данный момент t

Условимся точкой, поставленной над буквой, в дальнейшем обозначать производную по времени. Для того, чтобы определить и направление движения, введём понятие вектора скорости. Пусть и определяют два положения точки на траектории за промежуток времени (рис. 22). Скоростью точки будем называть

или

 

(2.5)

Вектор скорости точки равен векторной производной вектор-радиуса точки по времени и направлен по касатель­ной к траектории движения точки. Разложим вектор-радиус по соответствующим осям декартовой системы координат

.

Дифференцируя обе части этого равенства по времени и учитывая, что орты постоянны по величине и направлению будем иметь

,

что позволяет записать

. (2.6)

Модуль скорости равен

 

Ускорение точки.

В общем случае движение точки происходит с переменной по величине и по направлению скоростью. Желая охарактеризовать изменение скорости, вводят меру быстроты этого изменения со временем — ускорение, которое должно учитывать векторное (геометрическое) изменение скорости, т. е. изменение ее по величине и по направлению. Для этого рассмотрим (как и для скорости) два значения скорости в моменты времени , и определим ускорение как

(2.6)

Если радиус – вектор представлен разложением по ортам декартовой системы координат

, тогда

и

.

Модуль ускорения равен

.

Считая координатами точки N – конца вектора , можно рассматривать вектор скорости, согласно (2.5), как скорость конца вектора , а считая - координатами точки М – конца вектора , можно рассматривать вектор ускорения, как скорость конца вектора . Применяя полученные выражения единичных вектором осей натурального триэдра траектории, найдем составляющие вектора ускорения по этим осям. Вспомнив, что вектор ускорения есть производная по времени от вектора скорости, получим

,

но , откуда следует

(2.7)

Равенство (2.7) представляет собой разложение вектора уско­рения по осям натурального триэдра. Обозначив коэффициенты при единичных векторах, и записав проекции ускорения на оси натурального триэдра, соответственно через будем иметь:

причем из (2.7) следует, что

Последнее равенство говорит о том, что вектор ускорения пер­пендикулярен к бинормали, т. е. ускорение лежит в соприкасаю­щейся плоскости. Первое слагаемое в разложении (2.7) - дает касательную (тангенциальную) составляющую ускорения, второе - нормаль­ную составляющую ускорения. Иногда для кратко сти их называют просто касательным и нормальным ускорением. В случае ускоренного движения знаки и одинаковы, в случае замедленного движения - противоположны, т. е. при ускоренном движении касательное ускорение направлено в ту же сторону, что и вектор скорости, а при замедленном движении имеет направление, противоположное скорости (рис. 23).

Итак, вектор ускорения в криволинейном движении может быть представлен как геометрическая сумма двух ускорений: касательного и нормального. Величина ускорения может быть представлена так:

Рассмотрим два частных случая:

а) Случай равномерного движения; величина скорости постоянна, так что , и величина ускорения равна в этом случае

б) Случай прямолинейного движения; кривизна прямой линии равна нулю и, следовательно, , и .

Из сопоставления этих двух случаев следует, что в равномерном прямолинейном движении ускорение равно нулю.

Отметим, что не следует смешивать и так как первое выражение определяет величину полного ускорения, а второе - абсолютное значение лишь одной его касательной составляющей. На различие этих величин указывалось уже выше (формула (2.2)). Разложение ускорения на касательную и нормальную части имеет простое кинематическое значение. Вектор ускорения, определяющий быстроту изменения вектора скорости по величине и направлению, представляется суммой касательного ускорения, характеризующего изменение величины скорости, и нормального, характеризующего изменение ее по направлению.





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 474 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2253 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.