Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Способы задания движения точки. Уравнения движения точки; траектория.




КИНЕМАТИКА

__________________________________________________________

В разделе кинематики мы изучаем движение и устанавливаем основные пространственно – временные характеристики движения. В настоящем разделе, посвященном кинематике, отвлекаются от силовых взаимодействий между материальными телами и влияния на них силовых полей, а рассматривают механические движения тел, в отрыве от причин, которые создают и поддерживают эти движения. Движения в кинематике изучаются по отношению к некоторой системе отсчёта, представляющей жесткую, неограниченно простирающуюся во все стороны систему точек. В кинематике неважно, движется ли эта система или принимается неподвижной. Отметим, что такое равноправие систем не имеет места в динамике. В этом пространстве выбирается тело отсчёта, а в нём систему координат, например, три взаимно перпендикулярные координатные оси, служащие для определения положения отдельных точек тел.

Как указывалось в начале, пространство рассматривается как евклидово, так, применение теоремы Пифагора позволяет определить квадрат расстояния между двумя точками как сумму квадратов разностей соответствующих координат точек и т. п. Наряду с абсолютным пространством в классической кинематике используется понятие «абсолютного времени», одинаково и равномерно текущего во всех точках абсолютного пространства. В качестве такого времени принимается звёздное или среднее солнечное время. Заметим, что все выводы классической механики с достаточной для практики точностью справедливы, если скорости движения малы по сравнению со скоростью распространения света, а размеры областей пространства, в которых происходит движение, далеки от космических расстояний.

 

 

Глава 4.

 

Кинематика точки.

Способы задания движения точки. Уравнения движения точки; траектория.

1. Координатный способ задания положения и движения точки. Положение точки в пространстве (рис. 17) будем определять ее вектор-радиусом , проведенным из произвольной, выбранной наперед точки О (начала коор­динатной системы Oxyz). Из представленного рисунка (рис. 17) сразу видно, что проек­ции вектор-радиуса точки М на оси декартовых координат представляют не что иное, как координаты точки. Применяют и другие способы определения положения точки. Так, например, пользуются сферическими координатами: расстоянием r точки М от точки О (рис. 17), углом φ, и углом θ между осью OZ и вектор-радиусом . Вместо последнего угла θ можно рассматривать дополнительный угол ψ наклона вектор-радиуса к плоскости ОXY.

Координаты эти носят различные наименования в зависимости от области применения. Угол φ называют азимутом, иногда долготой, угол ψ - широтой, угол θ - полюсным углом. Если точка M лежит в плоскости Оху, то координаты φ и ρ носят наименование полярных координат. Для определения положения точки в пространстве существуют и другие системы координат, называемые вообще криволинейными координатами. Приведем формулы связи между декартовыми, цилиндрическими и сферическими координатами точки. Из рис. 17 следует:

х= ρ соsφ = r sin θ cos φ= r cos ψсоsφ,

у =ρ sin φ = r sin θ sin φ = r cos ψ sin φ, (2.1)

z = r cos θ = r sin ψ.

Если точка движется в пространстве, то ее координаты изме­няются с течением времени. По закону изменения этих координат можно судить о характере движения точки. Предположим, что нам заданы координаты точки в функции времени, т. е. заданы уравнения

Эти уравнения называются уравнениями движения точки в де­картовых координатах. Вместо декартовых координат х, у, z можно взять какие угодно другие координаты: полярные, сферические, цилиндрические и др. Выраженные в функции времени, они дадут уравнения движения точки в соответствующей системе координат.

2. Естественный способ задания точки.

Линия, описываемая движущейся точкой в пространстве, назы­вается траекторией. Для получения уравнений траекто­рии необходимо из уравнений движения исключить время. При естественном способе задания движения точки задаётся траектория движения точки и дуга S(t), отсчитываемая от выбранного начала до положения точки на траектории. Можно представить траекторию движения как дорогу, по которой идёт человек, а S(t) как расстояние, пройденное по этой дороге.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 620 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2188 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.