Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Второе достаточное условие существования экстремума




 

Если в точке х = х0 первая производная функции f (х) = 0, то при х = х0 имеет место максимум, если < 0, и, минимум, если > 0. Если же = 0, то для заключения об экстремуме в этой точке требуется дальней­шее исследование.

Пример. Найти экстремумы функции .

Решение. Область определения:

Значит, функция в точке х = 1 имеет максимум уmax (1) = 1/е.

Наибольшее и наименьшее значение функции на отрезке

 

Если функция f (х) непрерывна на отрезке [а, Ь], то на этом отрезке всегда имеются точки, в которых она принимает наи­большее и наименьшее значения. Этих значений функция дости­гает или в критических точках, или на концах отрезка [а, Ь]. Поэтому, чтобы определить наибольшее и наименьшее значение функции на отрезке, надо:

определить кри­тическое точка функции;

вычислить значения функ­ции в критических точках и на концах отрезка [а, Ь];

наибольшее из значений, найденных в п. 2, будет наибольшим, а наименьшее - наименьшим значением функции на отрезке [а, Ь].

 

Точки перегиба.

 

Говорят, что на интервале (а, Ь) кривая обращена выпуклостью вниз, если она лежит выше касательной, проведенной в любой ее точке.

Говорят, что на интервале (а, Ь) кривая обращена выпуклостью вверх, если она лежит ниже касательной, проведенной в любой ее точке.

Дуги кривой, обращенные выпуклостью вверх, в дальнейшем будем называть выпуклыми, а обращенные выпуклостью вниз,— вогнутыми.

Дуга кривой у = f (х) выпукла на интервале (а, Ь), если во всех точках этого интервала (х) < 0, и вогнута на этом ин­тервале, если во всех его точках (х) > 0.

Интервалы, в которых дуги кривой выпуклы, опре­деляются из неравенства (х) < 0, а интервалы, в которых дуги этой кривой вогнуты, - из неравенства (х) > 0.

Точка кривой, отделяющая ее выпуклую дугу от вогнутой, называется точкой перегиба.

Точки, кривой, в которых (х) = 0 или (х) = , а также те из них, в которых (х) не существует, называются критическими точками второго рода. Точки перегиба следует искать среди критических точек вто­рого рода.

В критической точке второго рода х = х0 перегиб будет только в том случае, когда при переходе через эту точку (х) меняет знак.

Для определения точек перегиба кривой надо опре­делить все критические точки второго рода и рассмотреть знаки (х) в каждых двух соседних интервалах, на которые эти точки делят область существования функции. В случае, если знаки (х) в двух соседних интервалах различны, критическая точка второго рода является точкой перегиба. Если же в двух соседних интервалах (х) имеет один и тот же знак, то в рассматри­ваемой критической точке второго рода перегиба нет. В точке перегиба кривая пересекает касательную.

Пример. Определить интервалы выпуклости и вогнутости и точки перегиба графика функции

у = 5х2 + 20х + 9.

Решение. Область существования функции — интервал );

. и так как у" > 0 при любом значении х, то кривая вогнута на всем интервале ). Точек перегиба нет.

Пример. Определить интервалы выпуклости и вогнутости и точки перегиба графика функции

Решение. Область существования функции - интервал ).

Найдем у": .

При любом х вторая производная конечна и существует. Критическую точку второго рода найдем из уравнения у" = 0, т.е. из уравнения Интервал существования функции она разделяет на два: . При любом х из первого интервала у" < 0, а при любом х из второго интервала у" > 0, значит - точка перегиба, а так как на первом интервале у" < 0, то дуга кривой на нем – выпукла, а во втором у" < 0, и дуга кривой вогнута. Координаты точек перегиба (4,-125).

 

Асимптоты.

 

Если расстояние d от точки кривой у = f (х), имеющей бесконечную ветвь, до некоторой определенной прямой по мере удаления точки по этой кривой в бесконечность стре­мится к нулю, то прямая называется асимптотой кривой.

Различают асимптоты: 1) горизонтальные, 2) вертикальные и 3) наклонные.

1. Кривая у = f (х) имеет горизонтальную асимптоту у =b только в том случае, когда существует конечный предел функции f (х) при , и этот предел равен b, т. е. если

2. Кривая у = f (х) имеет вертикальную асимптоту х = а, если при . Для опре­деления вертикальных асимптот надо отыскать те значения аргу­мента, вблизи которых f (х) неограниченно возрастает по абсолютной величине. Если такими значениями аргумента являются а1, а2, …, то уравнения вертикальных асимптот будут

х = а1, х =а2…

3. Для определения наклонной асимптоты у = kx + b кривой у = f (х) надо найти числа k и b из формул

(следует отдельно рассматривать случаи ). Наклонные асимптоты у кривой у = f (х) существуют в том и только в том случае, когда эти пределы имеют ко­нечное значение. При определении этих пределов удобно пользоваться правилом Лопиталя.

Пример. Найти асимптоты кривой

Решение. Горизонтальных асимптот нет. Вертикальную асимптоту находим из условия

2х + 3 = 0 => х = - 3/2, при этом у , когда , у , когда . Определим наклонные асимптоты, уравнение которых имеет вид: у = kx + b

 

 

Так как k и b имеют конечные значения и равны между собой при х и при х , то имеется единственная наклонная асимптота, уравнение которой

 

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 356 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2321 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.