Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Асимптоты гиперболы - две прямые, определяемые уравне­ниями




Напомним, что асимптотой кривой, имеющей бесконечную ветвь, называется прямая, которая обладает тем свойством, что когда точка по кривой удаляется в бесконечность, ее расстояние до этой прямой стремится к нулю.

 

4. Парабола. Параболой называется геометрическое место точек, каждая из которых одинаково удалена от заданной фиксированной точки и от заданной фиксированной прямой. Точка, о которой идет речь в определении, называется фокусом параболы, а пря­мая — ее директрисой.

Простейшее уравнение параболы

y2= 2 px

Входящая в это уравнение величина р называется параметром параболы. Параметр параболы равен расстоянию от директрисы параболы до ее фокуса.

Координаты фокуса F параболы F(, 0). Уравнение директрисы параболы

. Эксцентриситет параболы е= 1.

 

Пример. Составить простейшее уравнение гиперболы, если расстояние между вершинами ее равно 20, а расстояние между фокусами 30.

Решение:

Вершины гиперболы лежат на ее действительной оси. По условию 2а = 20; 2с == 30. Значит, а = 10; с = 15 а2 = 100; с2 = 225.

Величины а, и и с у гиперболы связаны соотношением а2 +b2 = с2; отсюда

b 2 = с2 —а2 = 225 — 100 Þ b 2 = 125. Значит, уравнением гиперболы будет

Пример. Действительная полуось гиперболы равна 5, эксцентриситет е= 1,4. Найти уравнение гиперболы.

Решение:

По условию а = 5, значит а2 = 25. По формуле е = =1,4, отсюда с = 1,4·а = 1,4 · 5 = 7; с 2 = 49; b 2 = с 2 - а2 = 49 — 25 = 24, b 2 =24

Иско­мым уравнением будет

Пример. Найти уравнение асимптот гиперболы 2 x2 - 3 y2 = 6.

Решение:

У гиперболы две асимптоты, определяемые урав­нениями Следует найти a и b.

Приведем уравнение гиперболы к простейшему виду, разде­лив обе его части на 6. Получим

Отсюда заключаем, чт а2 =. 3, а = ; b 2 = 2, b == . Подстав­ляя эти значения а и b в уравнения асимптот получаем: ;

 

IV. МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Функция одной переменной

 

Если каждому значению переменной х (аргументу) из некоторого множества Х ставится в соответствие одно значение у из множества Y, то говорят, что на множестве Х задана функция f (x)со множеством значений Y, где Х – область определения функции, Y – область значения функции, или у является функцией от х и записывают у = f(x). Если функция задана аналитически, то областью существования функции (иначе, областью значения функции) называется совокупность тех действительных значений аргумента, при которых аналитическое выражение определяющее функцию, принимает только действительные значения.

Графиком функции у = f(x) называется множество точек (х, f(x)). Графиком пользуются для геометрического изображения функций. Графики многих функций строят с помощью параллельного переноса, растяжения или сжатия основных элементарных функций: степенной, показательной, логарифмической, тригонометрической и обратных тригонометрических.

Функция у = f(x) называется четной, если выполняется равенство . График четной функции симметричен относительно оси ординат. Функция у = f(x) называется нечетной, если выполняется равенство . График нечетной функции симметричен относительно начала координат.

Пример: Найти область значения функции:

Решение:

.

 

Предел функции.

 

Число А называется пределом функции при х , если для любого сколь угодно малого существует число такое, что при . Это записывают так: . Аналогично определяется предел при х .

Функция называется бесконечно большой при х , если и бесконечно малой при х , если . Аналогично определяются бесконечно большие и бесконечно малые при х .

При вычислении пределов необходимо знать такие теоремы:

- Const.

Если и существуют, то

Для всех основных элементарных функций в произвольной точке их области определения справедливо равенство

;

Const.

5. ,

Бесконечно малые и называются эквивалентными при х , если . Это записывают так:

Если при , то выполняются эквивалентности:

1. 4.

2. 5.

3. 6.

Предел отношений двух бесконечно малых не изменится, если заменить их эквивалентными величинами.

При вычислении пределов часто используют:





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 657 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2321 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.