Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


III. Аналитическая геометрия




Аналитическая геометрия на плоскости

Уравнение прямой с угловым коэффициентом имеет вид:

y=kx+b,

где k — угловой коэффициент прямой, т. е. тангенс того угла, который прямая образует с положительным направлением оси Ох, причем этот угол отсчитывается от оси Ох к прямой против часовой стрелки, величина отрезка, отсекаемого прямой на оси ординат. При b= 0 уравнение имеет вид у = kx, и соответствующая ему прямая проходит через начало координат. Этим уравнением может быть определена любая прямая на плоскости, не перпендикулярная оси Ох.

Общее уравнение прямой

Ax + By + С = 0.

Частные случаи общего уравнения прямой:

а) Если С = 0, уравнение будет иметь вид Ax + By = 0, и прямая, определяемая этим уравнением, проходит через начало координат, так как координаты начала координат х= 0, у = 0удовлетворяют этому уравнению.

б) Если в общем уравнении C =0, то уравнение при­мет вид

Ах + С = 0, или х = .

Уравнение не содержит переменной у, а определяемая этим урав­нением прямая параллельна оси Оу.

в) Если в общем уравнении прямой (3,2) А = 0, то это урав­нение примет вид

By + С = 0, или у = ;

уравнение не содержит переменной х, а определяемая им прямая параллельна оси Ох.

г) При С == 0 и А = 0 уравнение принимает вид By = О, или у = 0.

Это уравнение оси Ох.

д) При С = 0 и В = 0 уравнение запишется в виде Ах == 0 или х = 0.

Это уравнение оси Оу

Уравнение прямой в отрезках на осях

где а — величина отрезка, отсекаемого прямой на оси Ох;

b — величина отрезка, отсекаемого прямой на оси Оу.

Нормальное уравнение прямой

x cosφ. + y sin φ —р = 0.

Здесь р— длина перпендикуляра, опущенного из начала коор­динат на прямую, измеренная в ед. масштаба, φ — угол, ко­торый этот перпендикуляр образует с положительным направ­лением оси Ох. Отсчитывается этот угол от оси Ох против часо­вой стрелки. Для приведения общего уравнения прямой к нормальному виду обе его части надо умножить на нормиру­ющий множитель.

причем перед дробью следует выбрать знак, противоположный знаку свободного члена С в общем уравнении прямой.

 

Уравнение прямой, проходящей через данную точку A (x1,y1) в данном направлении, определяемом угловым коэф­фициентом k,

y—y1=k(x—x1).

Это уравнение определяет пучок прямых, проходящих через точку А (x1,y1), которая называется центром пучка.

Уравнение прямой, проходящей через две точки: А (x1,y1) и В (x2,y2), записывается так:

Угловой коэффициент прямой, проходящей через две данные точки, определяется по формуле

Углом между прямыми а и b называется угол, на который надо повернуть первую прямую а вокруг точки пересечения этих прямых против движения часовой стрелки до совпадения ее со второй прямой b.





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 388 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.