Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Гидростатическое давление и его свойства




Гидростатическим давлением называется внутренние напряжения сжатия в жидкости, возникающие под действием внешних сил.

Всякое жидкое тело в состоянии равновесия находится под воздействием двух категорий внешних сил: поверхностных и массовых.

Поверхностные силы – это силы, которые оказывают действие на поверхность жидкого тела, например, силы давления поршня или плунжера насоса, атмосферное давление и т. п.

Массовые, или объемные, силы – это силы тяжести, инерции и центробежные силы, которые в однородной жидкости распределены по всему объему жидкого тела. Величина элементарной массовой силы, приложенной к частичке жидкости, пропорциональна массе этой частицы.

Силы внутреннего трения в покоящейся жидкости не проявляются.

Рис. 2.1

Возьмем жидкое тело, находящееся в состоянии покоя и мысленно разделим его по плоскости А-А на две части. Верхнюю часть отбросим, а ее силовое воздействие на нижнюю часть заменим силой F (рис.2.1). Сила F, приложенная к площади W, разделяющей верхнюю и нижнюю части жидкого тела, называется силой гидростатического давления.

При этом следует иметь ввиду, что нижняя часть воздействует на верхнюю с силой равной по величине F, но противоположной по направлению.

Величина среднего гидростатического давления определяется величиной силы, приходящейся на единицу площади, т. е.

. (2.1)

Величина гидростатического давления в какой-либо точке площади W, определяется отношением элементарной силы dF, приложенной к элементарной площадке dw, расположенной в области данной точки.

. (2.2)

Единицей измерения гидростатического давления в системе СИ является Паскаль. 1 Па = 1 Н/м2.

Гидростатическое давление обладает двумя основными свойствами.

Первое свойство гидростатического давления.

Гидростатическое давление действует всегда по внутренней нормали, направленной к площадке действия. Это положение может быть доказано методом от противного. Предположим, что вектор гидростатического давления Р направлен не по нормали, а по наклонной линии (рис.2.2). Разложим его на нормальную Рн и касательную Рк составляющие. Нормальные составляющие верхней и нижней частей тела уравновесятся, а касательные составляющие вызовут смещение одной части жидкости относительно другой, что противоречит состоянию покоя. Следовательно, гидростатическое давление может быть направлено лишь по нормали к площадке действия.

Теперь предположим, что вектор Р направлен не по внутренней, а по внешней нормали (рис. 2.3). Так как жидкость не обладает способностью воспринимать растягивающие усилия, то произойдет разрыв жидкого тела, что также противоречит состоянию покоя и физическим свойствам жидкости. Поэтому и это предположение исключается.

Из рассмотренного следует, что гидростатическое давление, будучи всегда направленным внутрь жидкости, является давлением сжимающим.

Второе свойство гидростатического давления.

В любой точке внутри жидкости гидростатическое давление одинаково по всем направлениям и не зависит от угла наклона площадки, на которую оно действует в данной точке.

Для доказательства этого свойства выделим в неподвижной жидкости элементарный объем в форме прямоугольной призмы с ребрами, параллельными координатным осям и соответственно равным dx, dy, dz (рис.2.4)

Рис.2.4.

Для наглядности сделаем проекцию призмы на координатные оси Оx и Оz. Пусть вблизи выделенного объема на жидкость действует единичная массовая сила, составляющие которой равны X, Y и Z.

Обозначим через Pк гидростатическое давление, действующее на грань, нормальную к оси Ox, через Py давление на грань, нормальную к оси Oy и т. д. Гидростатическое давление, действующее на наклонную грань обозначим через Pn, а площадь грани через dw. Все эти давления направлены по нормалям к соответствующим площадкам.

Составим уравнение равновесия выделенного объёма жидкости сначала в направлении оси Ox

, (2.3)

где – направление действия массовой силы.

Решаем:

, (2.4)

, (2.5)

(угол a образован нормально Pn и осью Ox)

, (2.6)

(X – единичная массовая сила вдоль его объёма).

Масса тетраэдра равна произведению его объёма dW на плотность r, т.е.

. (2.7)

Тогда,

. (2.8)

Запишем теперь уравнение равновесия:

, (2.9)

Разделим все члены уравнения (2.9) на площадь yOz (т.е. на dydz)

Будем иметь:

. (2.10)

При стремлении размеров к нулю, последний член уравнения (2.10), содержащий множитель dx, будет так же стремиться к нулю, а давления Px и Pn будут оставаться величинами конечными.

Следовательно, в пределе мы получим:

(2.11)

или

. (2.12)

Аналогично составляя уравнения равновесия вдоль осей Oy и Oz, после таких же рассуждений получим:

, (2.13)

или

. (2.14)

Так как размеры прямоугольной призмы dx, dy, dz были взяты произвольно, то и наклон площадки dw произволен, и, следовательно, в пределе при стягивании призмы в точку давление в этой точке по всем направлениям будет одинаково.

Рассмотренное свойство давления в неподвижной жидкости имеет место так же при движении идеальной жидкости. При движении же реальной жидкости возникают касательные напряжения, вследствие чего давление в реальной жидкости указанным свойством не обладает.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 1422 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2333 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.