Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Эпюры гидростатического давления




На криволинейные поверхности

Первый случай. Цилиндрическая поверхность, давление жидкости с одной стороны – справа (рис 2.25).

Рис.2.25

1) Выберем оси координат ОУ.

2)Определим горизонтальную (спроектируем) составляющую суммарного гидростатического давления. Она равна произведению силы гидростатического давления на площадь сечения, т.е.

, т.к. . (2.111)

3) Плечо давления горизонтальной составляющей силы

, (2.112)

4)Определим вертикальную составляющую суммарного гидростатического давления.

Поскольку силу давления жидкости на стенку можно вычислить так же по объёму эпюры, принимая последнюю за нагрузку, приложенную к стенке, то запишем

. (2.113)

5) Определим равнодействующую

. (2.114)

6) Найдём угол наклона линии действия силы F

. (2.115)

7) Графическим способом определим точку приложения силы F. Для этого проводим линию по направлению до пересечения с вертикальной составляющей силой , приложенной в центре тяжести тела давления. От точки пересечения сил и строим параллелограмм и находим равнодействующую силы F. Далее величину F откладываем в масштабе на линии равнодействующей от криволинейной поверхности – точка Е, которая и есть точка приложения равнодействующей силы – центр давления.

Второй случай. Цилиндрическая поверхность, давление жидкости слева. Все расчёты и графическое определение центра давления производятся как и в первом случае (вместо - ).

Третий и четвёртый случаи построения эпюр гидростатического давления на криволинейные поверхности можно изучить по [ ].

Закон Архимеда

Закон Архимеда о силе, действующей на погруженное в воду тело был сформулирован Архимедом за 250 лет до н.э. В настоящее время он звучит следующим образом: на погруженное в жидкость тело действует выталкивающая сила, равная весу жидкости, вытесненной этим телом.

Рис. 2.26

Рассмотрим силы, действующие на погруженное в жидкость тело А (рис. 2.26):

1)боковые силы . Так как они равны и противоположны, то их равнодействующая равна нулю;

2)сила тяжести тела А, направленная вниз;

3)сила давления жидкости на тело А сверху – ,

; (2.116)

4)сила давления жидкости на тело А снизу – ,

; (2.117)

Суммарная сила давления жидкости на погруженное тело, или выталкивающая сила, будет равна

. (2.118)

Но т.к. – есть объём погруженного тела А, то выталкивающая сила

. (2.119)

Следовательно, подъёмная, или выталкивающая, сила, действующая на погруженное в жидкость тело, равна весу жидкости, вытесненной данным телом.

Величина выталкивающей силы не зависит от глубины погружения тела и на различной глубине будет постоянной.

Гидродинамика

Задачи гидродинамики

Гидродинамика изучает закономерности движения жидкости и применение их в инженерной графике. Основные трудности изучения движения реального тела обусловлены самой природой жидкости и сложностью учёта вязкости сил внутреннего трения и трения жидкости о стенки канала. По предложению Л. Эйлера изучение гидродинамики начинают с рассмотрения идеальной (совершенной), невязкой жидкости, внося затем в найденные уравнения коррективы для учёта сил трения реальных жидкостей.

Основной задачей гидродинамики является определение величин, характеризующих движение жидкости: скорости течения и гидродинамического давления. Если эти факторы зависят только от координат рассматриваемой частицы, движение называется установившимся; если от координат и от времени, то движение – неустановившееся.

Задачей гидродинамики является так же нахождение зависимости между основными факторами движения, координатами и временем.

 

Основные понятия. Модель движения.

Направленную движущуюся массу жидкости называют потоком. Кроме скоростей и давления, координат и времени, относящихся к отдельным частицам, поток в целом характеризуется ещё и формой поперечного сечения. Форма потока обычно определяется сечением канала, в котором движется жидкость. Жидкость может заполнять всё сечение канала, или только часть сечения. В последнем случае у потока имеется свободная поверхность и можно говорить о глубине потока.

Движение потока, как и отдельной частицы, может быть установившимся и неустановившимся. Примером установившегося движения является движение воды в реках, и каналах при постоянных уровнях свободной поверхности, так же движение жидкости в трубах или её истечение через отверстие при постоянном напоре (например, холостой ход работы двигателя, бензонасос, помпа, масляный насос). Если же в реках и каналах уровни воды с течением времени изменяются (паводок) или движение в трубах и через отверстия происходит при переменном напоре, то движение жидкости в этих случаях будет.

В свою очередь установившееся движение жидкости может быть равномерным и неравномерным.

Равномерным движением жидкости называется такое движение, при котором её частицы, перемещаясь вдоль оси потока от одного поперечного сечения к другому, сохраняют свою скорость постоянной по величине и по направлению. Равномерное движение жидкости возможно только при постоянном поперечном сечении потока по всей его длине (применение – движение жидкости в цилиндрических трубах). Неравномерное движение жидкости наблюдается в открытых руслах и трубах с изменяющимися поперечными сечениями, что приводит к изменению скоростей по длине потока.

По степени заполнения потоком поперечного сечения канала различают напорное и безнапорное движение жидкости.

При напорном движении поток жидкости ограничен твёрдыми стенками по всему периметру поперечного сечения, например, в водопроводных трубах.

При безнапорном движении поток жидкости ограничен твёрдыми стенками только по части периметра поперечного сечения. Движение в этом случае происходит только под влиянием сил тяжести, вследствие текучести жидкости. Напорное же движение осуществляется под влиянием сил тяжести и разности давлений в начале и в конце трубопровода.

Во многих случаях для удобства и упрощения теоретических расчётов движения жидкости реальный поток мысленно считается состоящим из бесконечного числа элементарных струек. Это позволяет результаты исследований, приведённых для элементарной струйки, распространить с соответствующими поправками на весь поток жидкости.

Принимая для исследований струйчатую модель реального потока, считают, что все частицы жидкости перемещаются в потоке по так называемым линиям тока (рис. 3.1)

Рис.3.1

 

Линией тока называется кривая S-S, проведённая в жидкости по направлению её движется таким образом, что векторы скоростей в каждой её точке направлены к этой кривой.

Построим вокруг точки А (рис 3.1) замкнутый элементарный контур, образующий элементарную площадку . Если через все точки этого контура провести линии тока, то получим так называемую трубку тока, которая и образует элементарную струйку движущейся жидкости.

Рис.3.2

Так как в реальном потоке жидкость перемещается как единое физическое тело и в действительности трубок тока не существует, то и свойства, которыми наделяется элементарная струйка, являются условными.

В установившемся движении элементарная струйка имеет следующие свойства:

1. Форма элементарной струйки постоянна и не изменяется с течением времени, поскольку рассматривается установившееся движение.

2. Частицы жидкости не могут переходить из одной струйки в другую, т.к. струйки ограничены линиями тока, которые векторы скорости не пересекают, а являются касательными к ним.

3. Скорости во всех точках какого-либо поперечного сечения, ввиду его малости, одинаковы.

Основными гидравлическими элементами движения потока жидкости являются скорость, живое сечение и расход.

Скорость движения жидкости в какой-либо точке поперечного сечения потока в дальнейшем будем обозначать через u. Для реальных потоков эта скорость является величиной переменной, зависящей от местоположения точки в рассматриваемом поперечном сечении потока.

Живым сечением потока называется поверхность поперечного сечения, нормальная к местному значению вектора скорости в каждой своей точке.

Для потока жидкости живое сечение сложится из суммы живых сечений элементарных струек.

. (3.1)

Кроме площади характеристиками живого сечения являются смоченный периметр f, представляющий длину контура живого сечения, по которому жидкость соприкасается с неподвижными твёрдыми стенками и гидравлический радиус R, который есть отношение площади живого сечения к смоченному периметру f.

. (3.2)

Гидравлический радиус характеризует форму живого сечения и может быть разным при одинаковых значениях . Для круглого живого сечения гидравлический радиус численно равен половине геометрического радиуса.

Расходом называется количество жидкости, проходящей через данное живое сечение в единицу времени.

Полный расход потока жидкости составится из суммы расходов элементарных струек, взятых в пределах данного живого сечения потока

(3.3)

Для большинства реальных потоков не всегда удаётся математически установить закон распределения местных скоростей в поперечном сечении потока и проинтегрировать уравнение (3.3). Поэтому для решения данной задачи прибегают к понятию о средней скорости потока.

Средней скоростью потока V называется такая условная скорость, произведение которой на площадь поперечного сечения потока равно его расходу

. (3.4)

Следовательно, средняя скорость реального потока в каком-либо его сечении может быть определена из соотношения.

. (3.5)

 

Уравнения неразрывности





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 1024 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2189 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.