Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Подпространства линейных пространств




Определение 22. Подпространством линейного пространства называется такое множество его элементов, которое само является линейным пространством над тем же полем.

Теорема 14. Непустое множество элементов В Ì L является линейным подпространством в L тогда и только тогда, когда для любых двух элементов в1 и в2 из В и любого lÎ Р выполняются условия: в1 + в2 Î В и l× в1 Î В.

Доказательство. Þ Если В – линейное подпространство, то условия теоремы, очевидно, выполнены.

Ü Если условия теоремы выполняются, то возьмём любой элемент в Î В. Тогда (–1)× в = – в принадлежит В. Итак, в В для каждого элемента есть противоположный. Но тогда и в + (– в) тоже принадлежит В, т.е. 0 Î В. Остальные требования определения 14 выполняются очевидно. Следовательно, В – линейное пространство над тем же полем, что и L.

Примеры линейных подпространств.

1. Пусть а1, а2, …, ак – любая система векторов из L. Множество всех линейных комбинаций этих векторов (т.е. элементов вида a1 а1 + a2 а2 + … + aк ак) называется линейной оболочкой данной системы векторов и обозначается á а1, а2, …, ак ñ, или L (а1, а2, …, ак). Линейная оболочка любой конечной системы векторов из L является линейным подпространством в L.. Одним из базисов линейной оболочки является максимальная линейно независимая подсистема системы а1, а2, …, ак. Следовательно, размерность линейной оболочки равна рангу этой системы.

2. Множество многочленов степени не выше к (к £ n) с коэффициентами из поля Р является линейным подпространством в пространстве многочленов степени не выше n.

3. Множество компланарных геометрических векторов является линейным подпространством в пространстве всех геометрических векторов трёхмерного евклидова пространства.

4. Нулевой вектор является линейным подпространством в том линейном пространстве, которому он принадлежит.

5. Множество диагональных матриц порядка n является линейным подпространством во множестве квадратных матриц порядка n.

Пусть А и В – два линейных подпространства пространства L.

Определение 23. Суммой подпространств А и В называется множество всех возможных элементов вида а + в, где а Î А, в Î В. (Обозначение А + В)

Теорема 15. Сумма линейных подпространств из L есть линейное подпространство из L.

Доказательство. Пусть а1 + в1 и а2 + в2 – любыедва элемента из А + В. Тогда (а1 + в1) + (а2 + в2) = (а1 + а2) + (в1 + в2) Î А + В, так как а1 + а2 Î А, в1 + в2 Î В. Кроме того l×(а + в) = l× а + l× в Î А + В, так как l× а Î А, l× в Î В. Следовательно, по теореме 14 сумма А + В является линейным подпространством в L.

Теорема 16. Пересечение линейных подпространств из L есть линейное подпространство из L.

Доказательство проведите самостоятельно.

Теорема 17. Размерность суммы двух линейных подпространств равна сумме размерностей слагаемых минус размерность их пересечения.

Доказательство. Пусть С = А + В, где А и В линейные подпространства пространства L. Пусть D = А Ç В. Выберем базис d = (d1, d2, …, d к) в подпространстве D и дополним его векторами е = (е1, е2, …, еmf = (f1, f2 …, fs) так, чтобы система (е1, е2, …, еm, d1, d2, …, d к) была базисом в подпространстве А, а система (d1, d2, …, d к, f1, f2 …, fs) была базисом в В. Покажем, что система (е1, е2, …, еm, d1, d2, …, d к, f1, f2 …, fs) является базисом в подпространстве С. Если с Î С, то с = а + в. Так как а Î А, то а есть линейная комбинация векторов систем е и d. Так как в Î В, то в есть линейная комбинация векторов систем d и f. Но тогда с линейно выражается через векторы е, d и f. Остаётся показать, что система векторов (е1, е2, …, еm , d1, d2, …, d к, f1, f2 …, fs) линейно независима. Для этого рассмотрим a1 е1 + a2 е2 + … + am еm + b1 d1 + b2 d2 +... + bк dк + g1 f1 + g2 f2 + … + gs fs = 0. Вектор а = a1 е1 + a2 е2 + … + am еm + b1 d1 + b2 d2 +... + bк dк лежит в подпространстве А. Но в то же время а = – g1 f1 – g2 f2 – … – gs fs. Следовательно, а Î В. Итак, а Î D. Если бы а не был нулевым вектором, то он не мог бы выражаться через векторы системы f. Следовательно, – g1 f1 – g2 f2 – … – gs fs = 0. Так как векторы системы f линейно независимы, то g1= g2= …= gs = 0. Но тогда a1 е1 + a2 е2 + … + am еm + b1 d1 + b2 d2 +... + bк dк = 0. Так как система векторов (е, d) линейно независима, то отсюда следует, что a1 = a2 = … = am = b1 = b2 = … = bк = 0. Итак, система (е1, е2, …, еm, d1, d2, …, d к, f1, f2 …, fs) является базисом в подпространстве С. Отсюда dim C = m + k + s = (m + k) + (k + s) – k = dim A + dim B – dim D.





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 854 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.