Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение матричных уравнений




Рассмотрим простейшие матричные уравнения вида А×Х = В (14) и Х×А = В (15).

Возможны два случая: 1) матрица А квадратная невырожденная; 2) матрица А - либо вырожденная, либо прямоугольная.

1) Если А – квадратная и| А | ¹ 0, то уравнения (14) и (15) имеют единственное решение каждое: Х = А-1×В и Х = В×А-1 соответственно, если эти произведения определены. И не имеют решения, если они не определены.

2) А – квадратная матрица, но | А | = 0, либо А - прямоугольная матрица. Если матрица А имеет размерность m´n, а матрица В – размерность р´к, то, при m ¹ р уравнение (14) не имеет решения, а при n ¹ к не имеет решения уравнение (15). Если же m = р, то в уравнении (14) матрица Х должна иметь к столбцов, а в уравнении (15) она должна иметь р строк. Решение этих матричных уравнений сводится к решению систем линейных уравнений.

Пример 5. Найдите матрицу Х, если А×Х = В, где А = , В = .

Из примера 5 следует, что матрица А имеет обратную, поэтому Х = А-1×В. Используя найденную в примере 5 матрицу А-1, получим Х = × = = .

Пример 6. Найдите матрицу Х, если Х×А = В, где А = , В = . Так как | А | = 0, то для А обратной матрицы нет.По правилам умножения матриц, в матрице В столько строк, сколько их в матрице Х, и столько столбцов, сколько их в матрице А. Последнее условие выполняется, следовательно, уравнение имеет решение. На матрицу Х накладывается ограничения: в матрице Х должно быть два столбца и три строки. Чтобы найти элементы такой матрицы, обозначим их и перейдём к системе линейных уравнений. Пусть Х = . Тогда Х×А = . Полученная матрица равна матрице В тогда и только тогда, когда их соответствующие элементы равны. Получим три системы уравнений. Эти системы не имеют решений, следовательно, не имеет решения и данное матричное уравнение.

 

IV. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

Алгебраические операции

Пусть дано некоторое множество М. Будем говорить, что на множестве М задана внутренняя алгебраическая операция, если задан закон (правило), по которому каждой упорядоченной паре элементов а и в из М ставится в соответствие вполне определённый элемент с. Если при этом для любой пары элементов а, в из М соответствующий элемент с всегда тоже принадлежит М, то М замкнуто относительноданной операции.

Пусть даны два множества М и К. Будем говорить, что на множестве М задана внешняя алгебраическая операция, если задан закон, по которому для каждой пары элементов а Î М, в Î К ставится в соответствие вполне определённый элемент с Î М.

Сложение и умножение действительных чисел – примеры внутренних алгебраических операций на множестве действительных чисел. Умножение вектора на действительное число – пример внешней алгебраической операции на множестве векторов трёхмерного евклидова пространства.

Пусть на множестве элементов Р определены две внутренние алгебраические операции: сложение и умножение: при сложении каждой упорядоченной паре элементов а и в из Р взаимнооднозначно соответствует элемент с Î Р (с = а + в); при умножении тоже каждой упорядоченной паре элементов а и в из Р взаимнооднозначно соответствует элемент с Î Р (с = а×в).

Определение 12. Множество элементов Р называется полем, если на нём заданы две алгебраические операции: сложение и умножение, удовлетворяющие следующим требованиям (аксиомам):

1. Р замкнуто относительно обеих операций;

2. а + в = в + а для любых элементов а и в из Р (коммутативный закон для сложения);

3. (а + в) + с = а + (в + с) для любых элементов а, в и с из Р (ассоциативный закон);

4. $ 0 Î Р такой, что а + 0 = а для любого а Î Р;

5. для любого а Î Р существует (- а) Î Р такой, что а + (- а) = 0;

6. а×в = в×а для любых элементов а и в из Р (коммутативный закон);

7. (а×в) ×с = а× (в×с) для любых элементов а, в и с из Р (ассоциативный закон);

8. $ е Î Р такой, что е×а = а для любого а Î Р (е называетсяединицей и обозначается 1);

9. для любого а Î Р существует а-1 Î Р такой, что а×а-1 = е (а-1 обратный элемент для а);

10. (а + в) ×с = а×с + в×с для любых элементов а, в и с из Р.

Примерами полей являются множество рациональных чисел (R), множество действительных чисел (Q), множество комплексных чисел (С).

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 632 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2311 - | 2015 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.