Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Образ, ядро линейного оператора.




Образом линейного оператора называется множество всех векторов вида . Если , то образ есть подмножество из . Его обозначают или .

Если - линейный оператор, то , где - какой-либо базис пространства .

Ядро линейного оператора - это множество тех , для которых . Ядро линейного оператора (обозначается ) – подпространство пространства . Полезно уметь находить ядра и образы линейных операторов, их размерности (дефект и ранг).

 

Задача 3.2. Найти образ, ядро, ранг и дефект оператора (оператор двойного векторного умножения).

Решение. Будем считать, что мы уже убедились в линейности оператора .

Вычисление образа. Возьмем стандартный базис пространства : . Находим

(подпространство одномерное).

.

Вычисление ядра. Пусть . Это означает, что или

Отсюда где . Другими словами , а дефект .

(В нашем примере , но это не общее правило). Можно было воспользоваться формулой для двойного векторного произведения. Но решение вряд ли упростилось бы от этого.

Как правило, нахождение ядра в конце концов сводится к решению системы линейных однородных уравнений относительно координат произвольного вектора ядра. В рассмотренном нами примере эта система оказалась очень простой

что позволило нам сразу записать общее решение .

 

Матрица линейного оператора в данных базисах.

 

Обязательно нужно научиться строить матрицу линейного оператора в данных базисах. Но кроме этого, еще раз обратим наше внимание на следующую теорему: каждый линейный оператор из в однозначно определяется своими значениями на каком-либо базисе пространства . Эта теорема позволяет строить примеры различных операторов, удовлетворяющих наперед заданным свойствам.

 

Задача 3.3. Для каждого из нижеперечисленных условий постройте пример линейного оператора :

  1. .
  2. .
  3. .
  4. , где .
  5. На действует как тождественный, но .
  6. Каждое переводит в себя, но .

Решение. 1. Возьмем какой-либо базис в , например, стандартный

.

Так как , то из условия следует . Для определенности возьмем . Определим на базисе так:

Этими условиями линейный оператор полностью определен.

Если то по нашему определению

Легко убеждаемся, что .

Действительно,

- это множество тех , для которых , то есть .

6. Так как необходимо построить такой линейный оператор , который каждое переводит в себя, но , то будем считать, что система является линейно независимой, а значит, является базисом . Определим на базисе так:

Можно проверить, что таким образом введенный операторм является линейным и удовлетворяет всем необходимым условиям.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 1708 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.