Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Приведение двух параллельных сил




 

В ходе рассмотрения такой системы сил возможны три следующих случая приведения.

1. Система двух коллинеарных сил. Рассмотрим систему двух параллельных и направленных в одну сторону сил P и Q, приложенных в точках А и В. Будем считать, что силы перпендикулярны к этому отрезку (Рис.7.1а).

 

Выберем в качестве центра приведения точку С, принадлежащую отрезку АВ и удовлетворяющую условию:

АС / СВ = Q / P. (7.1)

 

Главный вектор системы RC = P + Q по модулю равен сумме этих сил: RC = P + Q.

Главный момент относительно центра С с учетом (7.1) равен нулю: M C = = P × АС - Q × СВ = 0.

Таким образом, в результате приведения мы получили: RC ¹ 0, M C = 0. Это означает, что главный вектор эквивалентен равнодействующей, проходящей через центр приведения, то есть:

Равнодействующая коллинеарных сил равна по модулю их сумме, а ее линия действия делит отрезок, соединяющий точки их приложения, обратно пропорционально модулям этих сил внутренним образом.

Отметим, что положение точки С не изменится, если силы Р и Q повернуть на угол a. Точка С, обладающая таким свойством называется центром параллельных сил.

2. Система двух антиколлинеарных и не равных по модулю сил. Пусть силы P и Q, приложенные в точках А и В, параллельны, направлены в противоположные стороны и по модулю не равны (Рис.7.1б).

Выберем в качестве центра приведения точку С, удовлетворяющую по-прежнему соотношению (7.1) и лежащую на той же прямой, но за пределами отрезка АВ.

Главный вектор этой системы RC = P + Q по модулю теперь будет равен разности модулей векторов: RC = Q - P.

Главный момент относительно центра С по-прежнему равен нулю: M C = = P × АС - Q × СВ = 0, поэтому

Равнодействующая антиколлинеарных и не равных по модулю сил равна их разности, направлена в сторону большей силы, а ее линия действия делит отрезок, соединяющий точки их приложения, обратно пропорционально модулям этих сил внешним образом.

 

 

 

3. Система двух антиколлинеарных и равных по модулю сил. Возьмем за исходный предыдущий случай приведения. Зафиксируем силу Р, а силу Q устремим по модулю к силе Р.

Тогда при Q ® Р в формуле (7.1) отношение АС / СВ ® 1. Это означает, что АС ® СВ, то есть расстояние АС ® .

При этом модуль главного вектора RC ® 0, а модуль главного момента не зависит от положения центра приведения и остается равным первоначальному значению:

MC = P × АС - Q × СВ = P (АС - СВ) = P × АB.

Итак, в пределе мы получили систему сил, для которой RC = 0, MC ¹ 0, а центр приведения удален в бесконечность, которую нельзя заменить равнодействующей. В этой системе нетрудно узнать пару сил, поэтому

Пара сил равнодействующей не имеет.





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 743 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2255 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.