Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Взаимное расположение прямых




Две прямых в пространстве могут занимать различное положение друг относительно друга: пересекаться, быть параллельны и скрещиваться.

1. Пересекающиеся прямые (рис. 3.11) имеют общую точку, проекции которой К 1 и К 2 расположены на одной линии связи.

2. Параллельные прямые пересекаются в несобственной точке. На эпюре одноименные проекции параллельных прямых параллельны, т.е. если a || b, то a 1 || b 1, a 2 || b 2, a 3 || b 3 (рис. 3.12).

Для прямых общего положения их параллельность определяется двумя проекциями. Особый случай представляют собой прямые параллельные одной из плоскостей проекций. Например, горизонтальные и фронтальные проекции профильных прямых всегда параллельны. Для оценки взаимного положения следует построить их проекции на p3. В данном примере прямые АВ и CD параллельны.


рис 3.11. Пересекающиеся прямые.


Рис. 3.12. Параллельные прямые.

Скрещивающиеся прямые не имеют общей точки, а точки пересечения их одноименных проекций не лежат на одной линии связи (рис. 3.13).

Исключение составляет случай, когда одна из скрещивающихся прямых профильная, и для оценки взаимного положения требуется построение проекции на плоскость p3. В данном примере BE и AC скрещиваются. Точки пересечения проекций скрещивающихся прямых лежащие на одной линии связи называются конкурирующими. По конкурирующим точкам определяется видимость элементов прямых на соответствующих плоскостях проекций.


Рис. 3.13. Скрещивающиеся прямые.

Видимость точек 1 и 2 на горизонтальной плоскости проекций определяется по фронтальной проекции, какая из точек по линии связи расположена выше (указано стрелкой). В данном случае точка 1, принадлежащая прямой а видима на p1.

Видимость точек 3 и 4 на фронтальной плоскости проекций определяется по горизонтальной проекции, какая из точек по линии связи расположена ближе к наблюдателю (указано стрелкой). В данном случае точка 3, принадлежащая прямой b видима.

 

 

Вопросы и задачи для самоконтроля

Когда след прямой будет находиться в бесконечно удаленной, несобственной точке?

Для какой прямой на эпюре следы:

a) лежат на оси проекций;

b) совпадают.

Построить следы прямой, определяемой точками А и В:

a) А (10, 20, 50); В (20, 50, 10).

b) А (60, 25, 60); В (20, 10, 25).

c) А (10, 15, 50); В (50, 15, 10).


ГЛАВА 4. ПЛОСКОСТЬ

Способы задания плоскости

Плоскость считается заданной; если из всех точек пространства можно выделить только те точки, которые принадлежат данной плоскости. Плоскость на чертеже может быть определена следующими способами (каждый из способов допускает переход к любому другому способу).

1. Тремя точками, не лежащими на одной прямой (рис. 4.1а).

2. Прямой и точкой вне прямой (рис. 4.1б).

3. Двумя пересекающимися прямыми (рис. 4.1в).

4. Двумя параллельными прямыми (рис. 4.1г).

5. Любой плоской фигурой-отсеком пространства (рис. 4.1д).


Рис. 4.1а. Три точки.


Рис. 4.1б. Прямая и точка.


Рис. 4.1в. Пересекающиеся прямые.


Рис. 4.1г. Параллельные прямые.


Рис. 4.1д. Фигура.

6. Следами плоскости (рис. 4.2).

Следы плоскости - это линии пересечения плоскости с плоскостями проекций.

Линия пересечения плоскости с плоскостью p1 называется горизонтальным следом плоскости Q 1, с плоскостью p2-фронтальным следом Q 2, с плоскостью p3-профильным следом Q 3. Точки пересечения следов на осях проекций называются точками схода следов Q x, Q y, Q z.

Отрезки OQ x, OQ y, OQ z, отсекаемые осями проекций, называют параметрами плоскости (рис. 4.2).


Рис. 4.2. Следы плоскости.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 484 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2431 - | 2176 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.