Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Прямая линия, перпендикулярная плоскости




Прямая линия перпендикулярна плоскости, если она перпендикулярна любым двум пересекающимся прямым плоскости.

Однако распознать перпендикулярность прямой линии и плоскости в общем случае сложно, т.к. прямой угол проецируется на плоскость проекции в натуральную величину, когда одна из его сторон параллельна данной плоскости проекций. Следовательно, если на некоторой плоскости å (рис. 4.19) провести две пересекающиеся прямые, одна из которых горизонталь h || p, а другая - фронталь f || p2, то перпендикулярная к плоскости å прямая a проецируется на плоскость p1 перпендикулярно h 1, а плоскость p2 перпендикулярна f 2.


Рис. 4.19. Прямая линия, перпендикулярная плоскости.

Итак: если прямая линия перпендикулярна к плоскости, то её горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали, а её фронтальная проекция – перпендикулярна фронтальной проекции фронтали, а также к одноимённым следам.

На рис. 4.19 рассмотрены случаи построения перпендикуляра из точки K к треугольнику АВС и к плоскости å, заданной следами. Если плоскости заданы не следами, то первоначально всегда требуется определить горизонталь и фронталь в плоскости.

 

 

Взаимно перпендикулярные плоскости.

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой.

Для построения плоскости перпендикулярной к данной достаточно определить прямую линию ей перпендикулярную. Через перпендикуляр к плоскости можно провести множество плоскостей, перпендикулярных данной (рис. 4.20а).


Рис. 4.20а. Взаимно перпендикулярные плоскости.

Рассмотрим построение одной из плоскостей, перпендикулярной данной плоскости (c Ç d) (рис. 4.20б).


рис. 4.20б. Взаимно перпендикулярные плоскости.

Определим горизонталь h и фронталь ¦ данной плоскости. Из произвольной точки K восставим перпендикуляр a на горизонтальной проекции a 1 ^ h 1, а на фронтальной проекции a 2 ^ ¦2. Дополним прямую a до плоскости пересекающейся с ней произвольной прямой b. Плоскость (a Ç b) перпендикулярна плоскости (c Ç d).

 

 

Вопросы и задачи для самоконтроля

1. Какими способами можно задать плоскость на чертеже?

2. Как можно перейти от любого способа задания плоскости к способу задания следами?

3. При каких условиях точка и прямая принадлежат плоскости?

4. Какие прямые линии в плоскости называются главными, и как они направлены?

5. Сформулируйте условия параллельности прямой линии плоскости и условия параллельности плоскостей.

6. Когда прямой угол между прямой линией и плоскостью проецируется в натуральную величину?

7. В каких случаях плоскости пересекаются по линиям частного положения:

a) прямыми уровня;

b) проецирующими прямыми.

8. Определите линию пересечения двух плоскостей, заданных параллельными прямыми (a || b) и пересекающимися прямыми (c || d) (задать самостоятельно).

9. Определите точку пересечения прямой (общего положения) с плоскостью S (общего положения.)






Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 563 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2392 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.