Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП)




Задача: пусть в схеме Гаусса-Маркова вектор случайных остатков с числовыми характеристиками , , имеет нормальный закон распределения. Требуется оценить параметры и модели методом максимального правдоподобия.

Решение: Будем предполагать, что объясняющие переменные в модели

детерминированные, матрицу полагаем известной. Из и сделанного предположения о числовых характеристиках и законе распределения вектора следует, что вектор тоже обладает нормальным законом распределения

с числовыми характеристиками и .

Для отыскания оценок параметров ММП действуем согласно следующему алгоритму:

1) составим функцию правдоподобия выборки

(

и вычисляем ее логарифм:

2) Найдем производные логарифма по аргументам и приравняем их к нулю:

3) Решаем полученную систему уравнений. Сначала из первого уравнения (после умножения его на ) находим :

Затем подставляем его во второе уравнение системы и после умножения этого уравнения на находим = , где . Полученные величины образуют решение системы и являются искомыми ММП-оценками параметров (эффективными и ассимптотически несмещенными).


 

Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).

Примером нелинейной по коэффициентам функции регрессии служит производственная функция Кобба-Дугласа:

(1)

В ней Y – уровень выпуска продукции за принятый отрезок времени; K и L – уровни соответственно основного капитала и живого труда, использованные в процессе выпуска величины Y. Подчеркнём, что функция не линейна по коэффициентам . Это значит, что оценить параметры эконометрической модели с такой функцией регрессии строго нельзя ни одним из обсуждённых методов. Заметим, однако, что преобразование логарифмирования позволяет трансформировать функцию К-Д к линейной по коэффициентам:

(2)

Функция регрессии в уравнении (1) называется стандартной, поскольку операция логарифмирования трансформировала её к линейной по коэффициентам.

С учётом свойств операции логарифмирования составим следующим образом спецификацию модели товаров и услуг в стране:

(3)

(случайные возмущения включили в виде подходящего сомножителя)

После операции логарифмирования с учётом отмеченных в (2) обозначений, мы получили трансформацию модели (3) в виде базовой модели эконометрики:

После оценивания линеаризованной модели можно вернуться при помощи операции возведения в степень к оценке исходной модели (3), где


 

Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.

Рассмотрим построение оптимального (наиболее точного) прогноза искомого значения y0 эндогенной переменной линейной модели множ. регрессии на примере модели Оукена:

, где

y – темп прироста реального ВВП, x0=Ut-Ut-1 – изменение уровня безработицы.

0 – значение экзогенной переменной, при которой должен быть вычислен прогноз величины y0.

Прогноз величины y0 обозначим символом .

Мы предполагаем, что искомая величина и известные значения экзогенной переменной связаны м-ду собой уравнением линейной модели:

Прогноз будем строить так, чтобы оказались справедливыми следующие 2 требования к ошибкам прогноза:

– ожидаемая ошибка прогноза равна 0 (несмещённость прогноза)

квадрат среднеквадратической ошибки прогноза минимален –кучность рассеивания минммальна(разброс минимален)

Справедлива следующая теорема – теорема об оптимальном прогнозе: Пусть справедливы все предпосылки теоремы Гаусса-Маркова для обучающей выборки . Тогда:

А) оптимальный прогноз величины y0 вычисляется по формуле:

(1)

Чтобы вычислить оптимальный прогноз, нужно оценить коэффициенты модели МНК и подставить в уравнение регрессии известное значение эндогенной переменной.

Б) Точность прогноза вычисляется по правилу:

, где

, –квадратичная форма заданных значения экзогенной переменной, в случае модели Оукена

Неотрицательная константа q0 отражает влияние на точность прогноза ошибок оценок коэффициентов модели-точность прогноза падает по мере удаления значения x0 регрессора x от его выборочного среднего.

Среднеквадратичная ошибка прогноза (1) отыскивается по формуле: =


36. Тест Голдфелда-Квандта гомоскедастичности случайного остатка в ЛММР

Обратимся к предпосылке теоремы Гаусса-Маркова №2: Дисперсия случайного остатка не зависит от значений объясняющих переменных:

Обсудим тестирование этой предпосылки, записав её в виде следующей статистической гипотезы:

(*)

В основании процедуры проверки этой гипотезы лежит следствие из теоремы Гаусса-Маркова: при оценивании коэффициентов модели по двум группам уравнений наблюдений (в первую группу входят, например, n1 первых уравнений, во вторую – n2 последних уравнений наблюдений) следующая дробь:

Эта дробь обладает законом распределения Фишера с количеством степеней свободы m1 =n1-(k+1) и m2= n2-(k+1).

Гипотеза Н0 может быть принята, если GQ не превосходит 2%-ой точки распределения Фишера.

Замечание: Гипотеза Н0 о гомоскедастичности остатка означает, что при любых перестановках наблюдений дисперсии случайных остатков остаются одинаковыми.

Обычное нарушение на практике возникает тогда, когда дисперсия случайного остатка возрастает (или убывает) с ростом абсолютных значений объясняющих переменных.

Тест Голдфелда-Квандта реализуется в итоге следующих шагов:

Шаг 1. Упорядочить уравнения наблюдений по возрастанию суммы модулей значений предопределенных переменных модели, т.е. по возрастанию значений .

Замечание: В этот пункт процедуры Г-К заложена естественная предпосылка, что возможная гетероскедастичность случайного остатка в модели, т. е. зависимость его условной дисперсии от объясняющих переменных модели имеет специальный вид:

, (1)

причём ф-ия f(z) является либо возрастающей, либо убывающей. Подчеркнём, что если случайный остаток гомоскедастичен, то любая зависимость от , в частности зависимость (1) отсутствует.

Шаг 2. По первым n’ упорядоченным уравнениям наблюдений объекта (где n’ удовлетворяет условиям k+1<n’, n’≈0,3n, k+1 – кол-во оцениваемых коэффициентов ф-ии регрессии) вычислить МНК-оценки параметров модели и величину , где – МНК-оценка случайного возмущения ui.

Шаг 3. По первым n’ упорядоченным уравнениям наблюдений объекта вычислить МНК-оценки параметров модели и величину

Шаг 4. Вычислить статистику

Шаг 5. Задаться уровнем значимости α и с помощью ф-ии FРАСПОБР при количествах степенней свободы 𝑣1, 𝑣2, где 𝑣1= 𝑣2=n’-(k+1), определить (1-α)-квантиль Fкрит=F1-α распределения Фишера.

Шаг 6. Принять гипотезу, если справедливы неравенства

, т. е. при этих справедливых неравенствах случайный остаток в модели полагать гомоскедастичным. В противном случае, гипотезу (*) отклонить как противоречащую реальным данным и делать вывод о гетероскедастичности случайного остатка в модели.

Тест корректен, когда остатки распределены по нормальному закону и выполнены другие предпосылки теоремы Г-М.

Обоснование: из-за утверждения выше – случайные переменные и распределены по закону хи-квадрат с количеством степеней свободы n’-(k+1), кроме того они независимы. А значит, - случайные переменные и распределены по Фишеру с количеством степеней свободы 𝑣1, 𝑣2. Следовательно критерием нулевой гипотезы может служить множество: . А если величина попадает в это множество, то гипотезу следует отклонить в пользу альтернативной гипотезы , представляющей отрицание гипотезы (*), т. е. означающей гомоскедастичность случайного остатка в модели.


 





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 973 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2429 - | 2175 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.