Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Закон распределения Фишера




 

Пусть - две независимые случайные переменные, имеющие распределение с числом степеней свободы n и m.

Случайная переменная называется дробью Фишера. Это позволяет при любом альфа вычислить , удовлетворяющее уравнению

 

, также называется Fкрит уровня , это (1-α)-квантиль распределения Фишера с числом степеней свободы n,m. Эту величины также можно вычислить в Excel, используя функцию FРАСПОБР по аргументам .

 

12. Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).

Рассмотрим набор случайных переменных . Этот упорядоченный набор называется случайным вектором и обозначается :

(1)

Его основными характеристиками служат:

1) Вектор ожидаемых значений компонент:

так называют вектор констант, компоненты которого – мат. ожидания компонент вектора .

2) Ковариационная матрица:

(2)

По главной диагонали располагаются дисперсии компонент случайного вектора. Недиагональные элементы это ковариации компонентов. Например, - это дисперсия компоненты вектора (1). Элемент - это ковариация компонент и вектора (1) Матрица является симметричной.

 

Количественные характеристики

 

Свойство операции вычисления ожидаемого значения вектора.

Если обобщить свойство на аффинное преобразование случайного вектора в случайный вектор

 

Свойство операции вычисления ковариационной матрицы случайного вектора.

Если же обобщить свойство

на аффинное преобразование случайного вектора в случайный вектор .

 

 

Основные количественные характеристики выхода аффинного преобразования случайного вектора (на примере вектора мнк – оценок коэффициентов линейной модели при гомоскедастичном неавтокоррелированном остатке).

Рассмотрим набор случайных переменных . Этот упорядоченный набор называется случайным вектором и обозначается :

(1)

Его основными характеристиками служат:

3) Вектор ожидаемых значений компонент:

так называют вектор констант, компоненты которого – мат. ожидания компонент вектора .

4) Ковариационная матрица:

(2)

По главной диагонали располагаются дисперсии компонент случайного вектора. Недиагональные элементы это ковариации компонентов. Например, - это дисперсия компоненты вектора (1). Элемент - это ковариация компонент и вектора (1) Матрица является симметричной.

 

Количественные характеристики

 

Свойство операции вычисления ожидаемого значения вектора.

Если обобщить свойство на аффинное преобразование случайного вектора в случайный вектор

 





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 950 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2477 - | 2272 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.