Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре




Пусть имеется выборка

значений переменных x и y модели

Данная выборка получена на этапе наблюдения и предназначена для оценивания параметров модели

В рамках данной модели величины (*) связаны следующей СЛОУ:

Она называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели, или иначе – схемой Гаусса-Маркова. Вот компактная запись этой схемы .

где - вектор известных значений эндогенной переменной yt модели;

 

- вектор неизвестных значений случайных возмущений ut;

- матрица известных значений предопределенной переменной x исходной модели, расширенная столбцом единиц (при наличии a0);

Наконец, – вектор неизвестных коэффициентов уравнения модели.

Оценку вектора обозначим . Тот факт, что эта оценка вычисляется по выборочным данным при помощи некоторой статистической процедуры, отразим:

где f (·, ·) – символ процедуры.

Данная процедура именуется линейной относительно вектора значений эндогенной переменной yt, если: .

, где матрица коэффициентов, зависящих только от выборочных значений X предопределенной переменной хt.

Класс таких всевозможных линейных процедур оценивания по исходной выборке вектора обозначим символом F.

Наилучшая процедура f* (·, ·) из выбранного класса процедур F должна генерировать оценку , которая обладает одновременно двумя свойствами: ожидаемая оценка параметра совпадает с истинным значением

, i=0,1 (эффективности).


29.Свойства МНК-оценок параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков: независимость случайных векторов

Рассмотрим с учётом схемы Гаусса-Маркова в компактной форме и случайный вектор истинной ошибки

оценки (1)

или в компактном виде

Видно, что вектор является выходом линейного преобразования вектора . Следовательно, вектор имеет нормальный закон распределения с числовыми характеристиками

.

Значит, и вектор является нормально распределённым случайным вектором с числовыми характеристиками .

Теперь рассмотрим вектор

Подставим в это выражение (1)

(2)

или в компактной записи

Согласно (2) вектор тоже является выходом линейного преобразования вектора . Следовательно, и вектор имеет нормальный закон распределения. Его числовые характеристики

Для доказательства независимости нормально распределенных случайных величин необходимо и достаточно доказать, что эти векторы некоррелированны, т.е. что их взаимная ковариационная матрица нулевая:


 





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 1129 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.