Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Парные коэффициенты корреляции. Коэффициент множественной корреляции. Расчет частных коэффициентов детерминации модели




 

Парные коэффициенты корреляции используются для измерения тесноты связи между двумя переменными без учета их взаимодействия с другими переменными.

Например,

С помощью парного линейного коэффициента корреляции выявляется связь между двумя признаками, один из которых можно рассматривать как результативный, другой — как факторный. Но в действительности на результат воздействуют несколько факторов. В связи с этим возникают два типа задач: задачи измерения комплексного влияния на результативную переменную нескольких переменных и задачи определения тесноты связи между двумя переменными при фиксированных значениях остальных переменных. Задачи первого типа решаются с помощью множественных коэффициентов корреляции, задачи второго типа — с помощью частных коэффициентов корреляции.

Коэффициент множественной корреляции (R) характеризует тесноту связи между результативным показателем и набором фактор­ных показателей:

где σ2 общая дисперсия эмпирического ряда, характеризующая общую вариацию результативного показателя (у) за счет факторов;

σ ост 2— остаточная дисперсия в ряду у, отражающая влияния всех факто­ров, кроме х;

у — среднее значение результативного показателя, вычисленное по ис­ходным наблюдениям;

s — среднее значение результативного показателя, вычисленное по уравнению регрессии.

Коэффициент множественной корреляции принимает только поло­жительные значения в пределах от 0 до 1. Чем ближе значение коэффи­циента к 1, тем больше теснота связи. И, наоборот, чем ближе к 0, тем за­висимость меньше. При значении R < 0,3 говорят о малой зависимости между величинами. При значении 0,3 < R < 0,6 говорят о средней тесноте связи. При R > 0,6 говорят о наличии существенной связи.

Квадрат коэффициента множественной корреляции называется коэффициентом детерминации (D): D = R2. Коэффициент детермина­ции показывает, какая доля вариации результативного показателя свя­зана с вариацией факторных показателей. В основе расчета коэффици­ента детерминации и коэффициента множественной корреляции лежит правило сложения дисперсий, согласно которому общая дисперсия (σ2) равна сумме межгрупповой дисперсии (δ2) и средней из групповых дис­персий σi2):

σ2 = δ2 + σi2.

Межгрупповая дисперсия характеризует колеблемость результа­тивного показателя за счет изучаемого фактора, а средняя из групповых дисперсий отражает колеблемость результативного показателя за счет всех прочих факторов, кроме изучаемого.

Математические модели корреляционного анализа в форме коэф­фициентов имеют ограниченные аналитические возможности. Зная лишь направление ковариации показателей и тесноту связи, невозмож­но определить закономерности формирования уровня результативного показателя под влиянием исследуемых факторов, оценить интенсив­ность их влияния, классифицировать факторы на основные и второсте­пенные. Для этих целей используются модели регрессионного анализа. Линейная модель (уравнение) регрессионного анализа может быть пред­ставлена в виде

у = bo + b 1 x 1+ b 2 x 2 +... + bnxn,

где у — результативный показатель;

x 1, x 2,..., xn — факторные модели;

b 0, b 1, b 2, ..., bn — коэффициенты регрессии.

Частный коэффициент детерминации показывает, насколько процентов вариация результативного признака объясняется вариацией i-го признака, входящего в множественное уравнение регрессии. Он рассчитывается по формуле

Частный коэффициент детерминации - это Предельный (граничный) вклад Го регрессора в . Он показывает, на какую величину Уменьшается Коэффициент детерминации, если Й регрессор (и только он!) будет исключен из группы регрессоров.

Таким образом:

Здесь:

Коэффициент детерминации, который получается при включении всех регрессоров;

Квадрат вычисленного значения Статистики для Го регрессионного коэффициента;

Длина ряда наблюдений;

Количество регрессоров;

Число степеней свободы.

Расчетное значение Статистики для Го регрессионного коэффициента при может быть определено по формуле:

.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 1805 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.