Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Правило нахождения собственных векторов




 

Пусть – линейный оператор. Выберем в какой-либо базис и обозначим А матрицу оператора в этом базисе. Если Х – координатный столбец собственного вектора в заданном базисе, а – соответствующее ему собственное значение, то (4.41) равносильно равенству , которое, в свою очередь, равносильно следующему:

. (4.47)

Равенство (4.47) можно рассматривать как матричную запись однородной системы линейных уравнений, причем нас интересуют только ее нетривиальные решения. Как следует из § 5 главы 2, для существования таковых необходимо и достаточно, чтобы выполнялось условие

. (4.48)

Определение. Характеристическим многочленом матрицы А называется многочлен , уравнение (4.48) называется характеристическим уравнением матрицы А, а корни этого уравнения – ее характеристическими числами.

Лемма 4.2. Подобные матрицы имеют одинаковые характеристические многочлены.

►Пусть матрицы А и подобны, значит, существует невырожденная матрица такая, что . Тогда

Таким образом, матрицы и () тоже подобны, а значит, имеют одинаковые определители.◄

Эта лемма позволяет сформулировать следующее

Определение. Характеристическим многочленом (характеристическим уравнением, характеристическими числами) линейного оператора называется характеристический многочлен (характеристическое уравнение, характеристические числа) его матрицы в некотором, а значит, и в любом базисе.

Из изложенного выше мы видим, что каждое собственное значение линейного оператора является корнем его характеристического уравнения, т. е. характеристическим числом. Обратно, если – корень уравнения (4.48) и , то система (4.47) имеет нетривиальное решение Х 0, значит, АХ 0 = Х 0 и тогда, если – вектор, координатный столбец которого в выбранном базисе совпадает с , то , т. е. – собственное значение оператора . Если же , то оно не может быть собственным значением согласно определению.

Итак, собственные значения линейного оператора – те его характеристические числа, которые принадлежат полю P.

Теперь можно сформулировать следующее правило. Пусть А – матрица линейного оператора в некотором базисе. Чтобы найти собственные векторы оператора поступаем следующим образом:

1) составляем характеристическое уравнение (4.48) матрицы А и находим его корни . Те из них, которые принадлежат основному полю, являются собственными значениями (т. е., если Р = С, то все, если Р = R – только действительные);

2) для каждого из полученных собственных значений находим соответствующие ему собственные векторы, решая однородную систему (4.47) при .

Лемма 4.3. Если определитель однородной квадратной системы линейных уравнений

AX = О, (4.49)

равен нулю, то при любом набор

(, , …, ), (4.50)

где – алгебраическое дополнение к элементу матрицы А, – решение системы (4.49).

►Действительно, подставив (4.50) в каждое из уравнений (4.49), получаем

. (4.51)

Равенство (4.51) верно, так как при его левая часть представляет собой разложение по -й строке, а при оно верно на основании теоремы аннулирования. ◄

Пример. Найдем собственные векторы линейного оператора , который в некотором базисе пространства V 3 имеет матрицу

.

▼ 1. Составляем характеристический многочлен:

.

Характеристическое уравнение оператора выглядит так:

,

а характеристическими числами будут λ1 = 2; λ2 = 3 – i; λ3 = 3 + i. Если P = R, то собственное значение только одно – λ1 = 2; если же P = C, то все значения будут собственными. Рассмотрим последний случай.

2. λ1 = 2:

. (4.52)

Однородная система с матрицей (4.52) решается устно: . Значит, собственные векторы с этим собственным значением выглядят так: = α(1; 0; 1), .

λ2=3 – i:

. (4.53)

Так как , то . Поэтому достаточно найти один собственный вектор, а все остальные будут ему коллинеарными. Для нахождения же этого вектора воспользуемся леммой 4.3 и найдем упорядоченный набор из алгебраических дополнений к элементам, например, первой строки матрицы (4.53): Тогда все собственные векторы с собственным значением – это

.

λ3=3 + i:

(4.54)

Заметим, что матрицы (4.53) и (4.54) – комплексно-сопряженные. Значит, и решения систем с этими матрицами – тоже комплексно-сопряженные, и поэтому

Вопрос 29

Лемма о диагональном виде матрицы линейного оператора. Определение приводимости квадратной матрицы к диагональному виду и первая теорема о приводимости. Следствие. Замечание о матрице, приводящей матрицу А к диагональному виду

Лемма 4.4. Для того чтобы матрица А линейного оператора в некотором базисе пространства имела диагональный вид, необходимо и достаточно, чтобы этот базис состоял из собственных векторов оператора f, причем диагональными элементами матрицы А являются собственные значения этого оператора.

►Пусть

– (4.55)

базис пространства , A – матрица оператора f в этом базисе. Тогда

{ А –диагональная}

{(4.55) состоит из собственных векторов оператора а – его собственные значения}.◄

Определение. Говорят, что квадратная матрица А с элементами из поля P приводится к диагональному виду над P, если существует невырожденная квадратная матрица Т с элементами из P такая, что матрица – диагональная.

Теорема 4.13. Пусть А – квадратная матрица с элементами из поля P, – линейное пространство над Р, – тот линейный оператор, матрица которого в некотором базисе (4.55) пространства совпадает с А. Тогда для приводимости матрицы А к диагональному виду над полем Р необходимо и достаточно, чтобы в существовал базис, состоящий из собственных векторов оператора f.

►Выберем в еще один базис

(4.56)

и обозначим Т матрицу перехода от исходного базиса (4.55) к базису (4.56). Матрица оператора f в этом базисе имеет вид . Тогда

существует базис (4.56) из собственных векторов оператора f }

{матрица оператора в базисе (4.56) диагональная} { А приводится к диагональному виду}.◄

Следствие. Если все характеристические числа матрицы А различны и принадлежат полю Р, то А приводится к диагональному виду над Р.

Замечание. Если матрица А приводится к диагональному виду – матрице , то диагональными элементами последней являются собственные значения матрицы А, а матрица Т, приводящая А к диагональному виду, есть не что иное, как матрица перехода от исходного базиса к базису из собственных векторов.

Вопрос 30





Поделиться с друзьями:


Дата добавления: 2016-03-25; Мы поможем в написании ваших работ!; просмотров: 827 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2253 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.