Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Невырожденные линейные операторы. Теорема о взаимной однозначности




 

Определение. Линейный оператор называется невырожденным, если он любой ненулевой вектор переводит в ненулевой.

Теорема 4.4. Для того чтобы линейный оператор был невырожденным, необходимо и достаточно, чтобы он был взаимно однозначным.

►Пусть – линейный оператор, А – его матрица в некотором базисе, X и Y – координатные столбцы в том же базисе векторов и соответственно. Тогда

{ невырожденный} { система имеет единственное решение} { единственный , что }

{ единственный , что } { f – взаимно однозначный}.◄

Теорема 4.6.Произведение невырожденных линейных операторов – невырожденный линейный оператор.

►Пусть и – невырожденные линейные операторы. Тогда

{ } { } { }.

Tаким образом, gf – невырожденный линейный оператор.◄

 

Вопрос 22

Обратный линейный оператор

 

 

Теорема 4.7. Для любого невырожденного линейногооператора существует единственный обратный оператор , который также является линейным. При этом, если А – матрица оператора в некотором базисе, то матрица оператора в том же базисе совпадает с матрицей .

Единственность. Пусть некоторый оператор имеет два разных обратных: и . Тогда

– противоречие.

Существование. Пусть А – матрица оператора в некотором базисе. Тогда, по теореме 4.4 , значит, существует . Обозначим – тот линейный оператор, матрица которого в выбранном базисесовпадаетс .

Так как , и так как произведению матриц соответствует произведение операторов, то , и, таким образом, .◄

Замечание. М ожно доказать, что любой взаимно однозначный линейный оператор имеет единственный обратный, который тоже является линейным.

 

 

Вопрос 23

Определение и свойства изоморфизма линейных пространств

Определение.Изоморфизмом линейных пространств называется взаимно однозначный линейный оператор. Если существует изоморфизм , то линейные пространства и называются изоморфными. Изоморфизм обозначается так: .

Так как изоморфизм – взаимно однозначное отображение, то изоморфные объекты содержат одинаковое количество элементов. Кроме того, в силу линейности, действия, производимые над элементами пространства , одновременно производятся и над элементами пространства . Поэтому в математике изоморфные объекты не различаются.

Свойства изоморфизма

 

1. – рефлективность (изоморфизм осуществляет тождественное отображение).

2. – симметричность (если первый изоморфизм осуществляет с помощью отображения f, то второй – с помощью ).

3. { , } – транзитивность (если первый изоморфизм осуществляется с помощью отображения , второй – , то третий изоморфизм осуществляется с помощью отображения ).

Строгого доказательства этих свойств мы не приводим.

 

Вопрос 24





Поделиться с друзьями:


Дата добавления: 2016-03-25; Мы поможем в написании ваших работ!; просмотров: 2284 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2152 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.