Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение матрицы перехода и её свойства




Определение матрицы перехода

 

Пусть в линейном пространстве заданы два базиса:

(3.41)

и

. (3.42)

Принадлежность вектора второму базису отмечается штрихом, причем удобно штрих ставить не на вектор, а на индекс, например, – пятый вектор второго базиса. Тогда каждый из векторов второго базиса можно разложить по первому. Все координаты будем обозначать одной и той же ключевой буквой t с двумя индексами: нижним индексом обозначим номер разлагаемого вектора, а верхним – номер координаты. Таким образом,

(3.43)

Учитывая нашу договоренность, систему равенств (3.43) можно сокращенно записать одним равенством:

(3.44)

(оцените красоту записи!)

Введем следующие обозначения:

(подчеркиваем, что это матрицы-строки)

.

Тогда =[располагаем по правилу цепочки] = , откуда вытекает, что

. (3.45)

Матрицей перехода от базиса (3.41) к базису (3.42) называется матрица Т = , столбцами которой являются координатные столбцы векторов второго базиса в первом базисе, т. е. матрица, удовлетворяющая системе равенств (3.43) или (3.44), либо одному матричному равенству (3.45).

 

 

Свойства матрицы перехода:

1º. Матрица перехода от одного базиса к другому определяется однозначно.

►Вытекает из того, что она состоит из координатных столбцов векторов одного базиса в другом.◄

2º. Матрица перехода всегда невырождена.

►На основании матричного критерия линейной независимости.◄

3º. Если Т – невырожденная квадратная матрица n -го порядка и

– (3.46)

некоторый базис пространства , то в существует базис

(3.47)

такой, что Т – матрица перехода от (3.46) к (3.47).

►Пусть Положим (т. е. – вектор, чей координатный столбец в базисе (3.46) совпадает с i -м столбцом матрицы Т). Тогда (3.47) – линейно независимая система на основании матричного критерия, а значит, в является базисом. Из определения матрицы перехода вытекает, что Т – матрица перехода от (3.46) к (3.47).◄

4º. Матрица перехода от базиса к нему самому является единичной.

►Доказательство вытекает из равенства .◄

5º. Если Т – матрица перехода от базиса (3.46) к базису (3.47),а - матрица перехода от (3.47) к базису

, (3.48)

то матрицей перехода от (3.46) к (3.48) является матрица

►Действительно, , , и поэтому . Утверждение вытекает из определения матрицы перехода.◄

6º. Если Т – матрица перехода от (3.46) к (3.47), то матрицей перехода от (3.47) к (3.46) является

►(3.45) , и утверждение опять вытекает из определения матрицы перехода.◄

Замечание. По аналогии с равенством (3.44) естественно записать равенство , и поэтому элементы матрицы перехода от (3.47) к (3.46) естественно обозначать . Учитывая, что эта матрица есть не что иное, как получаем: Так как и то и

 

Вопрос 14





Поделиться с друзьями:


Дата добавления: 2016-03-25; Мы поможем в написании ваших работ!; просмотров: 7545 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2311 - | 2016 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.