Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Как пример аффинного, евклидова и метрического пространств




 

Важнейшим примером аффинного пространства является пространство . Положим

,

.

Для любых и определим операцию . Проверим выполнение аксиом:

;

положим

.

Тогда

Предположим, что существует вектор такой, что . Пусть . Значит, . Так как , то и поэтому . Следовательно, – противоречие.

Таким образом, пространство с введенной в нем операцией откладывания вектора от точки становится n- мерным аффинным или точечным пространством. Упорядоченные наборы из чисел в зависимости от контекста рассматриваются либо как векторы, либо как точки, а операция складывания упорядоченных наборов, опять же в зависимости от контекста, рассматривается либо как сложение векторов, либо как откладывание вектора от точки.

В качестве системы координат в выбирают, как правило, следующую:

Эта система координат удобна тем, что в ней координаты точек и векторов совпадают с упорядоченными наборами, изображающими эти точки или векторы.

Введем в еще одну операцию. Скалярным произведением векторов и пространства назовем число

.

Свойства скалярного произведения

 

1°.

2°.

3°.

4°. причем

Свойства 1° – 4° вы легко докажете в качестве упражнения исходя из определения скалярного произведения в .

Пространство с введенной в нем операцией скалярного произведения называется евклидовым пространством (подробно категорию евклидовых пространств мы будем изучать в шестой главе).

Из свойства 4°скалярного произведения видно, что для любого вектора существует . Это позволяет ввести в понятие длины вектора.

Длиной вектора называется число .

Очевидно, если , то , т. е., как и в школьной математике, длина вектора равна корню квадратному из суммы квадратов его координат.

Приведем без доказательства еще два свойства скалярного произведения (доказывать их будем в 6-й главе).

Неравенство КошиБуняковского:

, или ;

неравенство треугольника:

, или .

Из неравенства Коши – Буняковского вытекает, что для всех ненулевых векторов пространства выполняется неравенство , что дает возможность ввести понятие угла между векторами.

Углом между ненулевыми векторами и пространства называется угол такой, что

Введем еще в понятие расстояния между точками.

Расстоянием между точками М и N в пространстве называется число . Если , а , то

.

Таким образом, как и в школьной математике, расстояние между двумя точками в пространстве равно корню квадратному из суммы квадратов разностей их соответствующих координат.

Свойства расстояния

 

1°.

2°.

3°. (неравенство треугольника).

►Вытекает из равенства и неравенства треугольника для векторов. ◄

Пространство с введенным таким образом расстоянием между двумя точками называется метрическим пространством.

Таким образом, замечательное пространство – это линейное, аффинное (точечное), евклидово и метрическое пространство.

 

Вопрос 8





Поделиться с друзьями:


Дата добавления: 2016-03-25; Мы поможем в написании ваших работ!; просмотров: 580 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2921 - | 2851 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.