Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Цепи с распределенными параметрами. Первичные параметры однородной линии. Дифференциальные уравнения однородной линии




-продольное активное сопротивление единицы длины линии; -индуктивность единицы длины линии; -емкость единицы длины линии; -поперечная проводимость единицы длины линии. Разобьем линию на участки длиной dx, где x-расстояние, отсчитываемое от начала линии. На длине dx активное сопротивление равно , индуктивность - , проводимость утечки - и емкость - . Обозначим ток в начале рассматриваемого участка линии через i и напряжение между проводами линии в начале участка u. Если для некоторого момента времени t ток в начале рассматриваемого участка равен i, то в результате утечки через поперечный элемент ток в конце участка для того же момента времени равен , где - скорость изменения тока в направлении x. Скорость, умноженная на расстояние dx, является приращением тока на пути dx. Аналогично, если напряжение в начале участка u, то в конце участка для того же момента времени напряжение равно . Составим уравнение по второму закону Кирхгофа для замкнутого контура, образованного участком линии длиной dx, обойдя его по часовой стрелке:

После упрощения и деления уравнения на dx получим (1)

По первому закону Кирхгофа, (2)

Ток di (рис.2) равен сумме токов, проходящих через проводимость и емкость :

Пренебрегаем слагаемыми второго порядка малости, тогда (3)

Подставим (3) в (2), упростим и поделим уравнение на dx: (4)

Уравнения (1) и (4) являются основными дифференциальными уравнениями для линии с распределенными параметрами.

 

Синусоидальный режим в однородной линии. Волновое сопротивление линии. Коэффициент распространения. Общий вид уравнений однородной линии.

Обозначим комплексные действующие значения напряжения и тока на расстоянии x от начала линии через и

Применяя комплексную форму записи, получаем на основании уравнений (1) следующие уравнения (2).

Поскольку комплексные величины и не зависят от t и являются функциями только x, при переходе от уравнений (1) к (2) частные производные по x заменены обыкновенными.

Исключая из системы (2) ток , получаем уравнение относительно :

(3)

Аналогично, исключая из системы (2) напряжение , получаем уравнение относительно :

(4)

Введём обозначение

(5)

и назовём эту величину коэффициентом распространения. Итак, уравнения (3) и (4) записываются в виде:

(6)

Получились однородные линейные дифференциальные уравнения второго порядка. Решение первого уравнения системы (6) имеет вид:

(7)

Ток проще всего находится подстановкой решения (7) в первое уравнение системы (2):

или

(8)

где

(9)

называется волновым сопротивлением линии.

Подставим (5) в (7), получим:

Мгновенное значение напряжения в точке x равно мнимой части выражения

(10)

где , - аргументы комплексных величин A1 и A2 соответственно.

 

 





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 681 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2152 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.