Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линия без потерь. Уравнения линии. Возникновение стоячих волн. Распределение напряжения и тока вдоль линии в режимах холостого хода и короткого замыкания




Независимо от того, соблюдается ли условие (для неискаженной передачи требуется, чтобы коэффициент ослабления не зависел от частоты, а коэффициент был прямо пропорционален частоте; в последнем случае фазовая скорость получается не зависящей от частоты, такое положение имеет место при условии, что .) или нет, во всех случаях желательно, чтобы активное сопротивление r и проводимость изоляции g были по возможности малы (для уменьшения потерь энергии).

В воздушных линиях обычно индуктивное сопротивление превышает активное сопротивление r, а емкостная проводимость превышает активную проводимость g. С ростом частоты разница между этими величинами становится более значительной.

В ряде случаев оказывается полезным в первом приближении рассматривать линию, не имеющую потерь, т.е. пренебрегать активным сопротивлением и проводимостью по сравнению с соответствующими реактивными составляющими. Такая идеализация допускается для приближенной качественной и количественной оценки исследуемых явлений. При этом весьма упрощаются расчетные выражения и гиперболические уравнения линии переходят в тригонометрические.

Итак, основным исходным предложением, которое делают при рассмотрении линии без потерь, является приближенное условие, что и , в этом случае вторичные параметры линии примут весьма простой вид, а именно: ; ; ;

Следовательно в линии без потерь ослабление отсутствует. Ввиду постоянства фазовой скорости отсутствуют также фазовые искажения.

Выражения для коэффициента фазы, фазовой скорости и волнового сопротивления линии без потерь совпадают с выражениями, полученными для линии без искажений (вопрос 57). Следовательно, все что сказано о линии без искажений, относится к линии без потерь.

Уравнения линии в показательной форме:

Уравнения линии в гиперболической форме -à:

Положив в этих уравнениях, что , получим уравнения линии в гиперболической форме, выражающие напряжения и ток в начале через напряжения и ток в конце:

Ввиду того что гиперболические функции с мнимым аргументом преобразуются в тригонометрические функции, гиперболические уравнения линии принимают тригонометрическую форму:

Последние уравнения используются для рассмотрения стоячих волн.

Пользуясь уравнениями линии в комплексной и гиперболической формах рассмотрим систему, где мнимый коэффициент распространения примем равным ,получим для любой точки линии на расстоянии x’ от конца:

Входящий в эти уравнения коэффициент отражения

представляет в общем случае комплексную величину. Эти уравнения показывают, что в любой точке x’ слагается из падающей и отраженной волн напряжения, амплитуды которых находятся в отношении 1:|n2|; в свою очередь комплексный ток равен разности падающей и отраженной волн тока с тем же соотношением амплитуд. Точкам , соответствует максимально действующее значение U, так как при этом фазы падающей и отраженной волн напряжения совпадают. На расстоянии от этих точек падающая и отраженная волны оказываются в противофазе и действующее напряжение имеет минимум.

Координаты максимумов и минимумов U, являющиеся функциями от и не зависят от времени, т.е. с течением времени остаются на одном месте.

При ,т.е. при равенстве амплитуд прямой и обратной волны, в лини устанавливаются стоячие волны напряжения и тока. Кривые действующих U и I вдоль линии представляют в этом случае “выпрямленные” синусоиды. На линии образуются узлы – точки где U и I равны нулю, и пучности – где U и I максимальны.

Условие выполняется в трех случаях: при (холостой ход), (короткое замыкание), и при (реактивная нагрузка). Это для линий без потерь.

Стоячие волны легко исследуются с помощью уравнений для линии без потерь:

При холостом ходе

Узлы напряжения находятся в очках, для которых , откуда .

Пучности напряжения находятся в точках, для которых , откуда

Разомкнутый конец линии совпадает с узлом тока и пучностью напряжения.

При коротком замыкании :

На замкнутом конце линии x’=0 и в точках, удаленных от него на целое число полуволн , находятся узлы напряжения и пучности тока, а в точках, удаленных от конца на нечетное число четвертей волн , находятся пучности напряжения и узлы тока.





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 1091 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2490 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.