В классическом Число уравнений в этом случае равно числу ветвей схемы
методе находится решение в виде суммы общего и частного решения. Расчета переходный процесс описывается системой обыкновенных дифф.уравнений, составленных одним из методов расчета для мгновенных значений функций времени. Решение для каждой переменной этой системы находится в виде суммы общего и частного решения. Для составления уравнения могут быть использованы: метод, основанный на применении законов Кирхгофа, метод узловых потенциалов, метод контурных токов и т.д. Например, система дифференциальных уравнений, составленная после коммутации согласно первому и второму законам Кирхгофа, имеет вид:
Например,
Число уравнений в этом случае равно числу ветвей схемы. Пусть требуется найти ток ik в ветви с номером К.Исключая последовательно токи ветвей, в результате получим ток ik и его производные до порядка n:
Порядок дифф.уравнения n определяется количеством независимых реактивных элементов схемы (m). Обычно n=m, но в зависимости от способа соединения может быть и так, что n<m. Это будет, например, в случаях, когда индуктивные и емкостные элементы включены последовательно, или, например, когда емкости соеденениы парал. И имеют одинаковые нач условия(рис9,4):
Последовательно включенные емкостные элементы можно заменить одним элементом, так же как и парал включенные индуктивные элементы можно заменить одним эквивалентным. На рисунке 9.5 показана замена 2х последовательно включенных емкостей одной эквивалентной.
В общем случае порядок диф.уравнения n равен: n=nlc-nce-nlj, где nlc-количество реактивных элементов(L и C) в схеме, nce- количество емкостных контуров, nlj-количество индуктивных узлов или сечений.
Под ёмкостным понимается контур, состоящих из емкостных элементов или емкостных элементов и идеальных источников ЭДС, рис 9.6.а.Под индуктивным понимается узел, в который сходятся индуктивные ветви или индуктивные ветви и источники тока(рис. 9.6.б), либо сечения, которые пересекают только индуктивные ветви или индуктивные ветви и источники тока.
Отметим, что этап составления диф.уравнения не явл-ся обязательным и переходный ток или напряжение могут быть найдены без составления ур-ния. Как было указано, в классическом методе расчета переходных процессов решения уравнений представляется виде суммы общего и частного решения.
Частное решение описывает режим, который называется принужденным. Решение однородного уравнения(правая часть равна нулю) описывает процесс при отсутствии внешних ЭДС и источников тока и называется свободным. Соответственно рассматриваются свободные и принужденные токи, напряжения, заряды.
Таким образом, ток в ветви с номером К представляется в виде суммы .