Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Электростатика и постоянный ток 2 страница




На участке III (рис. 24, в) силы и направлены в противоположные стороны, так же как и на участке I, но в отличие от него меньший (по модулю) заряд (– Q) всегда находится ближе к заряду Q1, чем больший заряд (9 Q). Это значит, что можно найти такую точку на прямой, где силы и будут одинаковы по модулю, т. е.

. (1)

Пусть расстояние от меньшего заряда до заряда Q1 равно х, тогда расстояние от большего заряда будет (l+х). Выражая в равенстве (1) F1 и F2 в соответствии с законом Кулона, получим

.

Сокращая на QQ1 и извлекая из обеих частей равенства квадратный корень, найдем l + x =±3 x, откуда x1 =+ l /2 и x2=-l /4.

Корень x2 не удовлетворяет физическому условию задачи (в этой точке силы F1 и F2 хотя и равны по модулю, но направлены в одну сторону).

Определим знак заряда, при котором равновесие будет устойчивым. Рассмотрим смещение заряда Q1 в двух случаях: 1) заряд положителен;2) заряд отрицателен.

1. Если заряд Q1 положителен, то при смещении его влево обе силы F1 и F2 возрастают, но F1 возрастает медленнее (заряд 9 Q всегда находится дальше, чем – Q). Следовательно, F2 (по модулю) больше, чем F1, и на заряд Q1 будет действовать результирующая сила, направленная также влево. Под действием этой силы заряд Q1 удаляется от положения равновесия. То же происходит и при смещении заряда Q1 вправо. Сила F2 убывает быстрее, чем F1. Векторная сумма сил в этом случае направлена вправо. Заряд под действием этой силы также будет перемещаться вправо, т. е. удаляться от положения равновесия. Таким образом, в случае положительного заряда равновесие является неустойчивым.

2. Если заряд Q1 отрицателен, то его смещение влево вызовет увеличение сил F2 и F1, но сила F1 возрастает медленнее, чем F2, т.е. | F2 |>| F1 |. Результирующая сила будет направлена вправо. Под действием этой силы заряд Q1 возвращается к положению равновесия. При смещении Q1 вправо сила F2 убывает быстрее, чем F1, т. е. | F1 |>| F2 |. результирующая сила направлена влево и заряд Q1 опять будет возвращаться к положению равновесия. При отрицательном заряде равновесие является устойчивым. Величина самого заряда Q1 несущественна.

Отметим, что в электростатике устойчивое равновесие возможно только при определенных ограничениях. В нашем примере заряд Q1 может перемещаться только вдоль прямой, проходящей через заряды – Q и 9 Q. Если это ограничение снять, то устойчивого равновесия не будет. В системе зарядов, находящихся под действием одних только электростатических сил, устойчивое равновесие невозможно (теорема Ирншоу).

 

Пример 3. Тонкий стержень длиной l =30 см (рис. 25) несет равномерно распределенный по длине заряд с линейной плотностью t =1 мкКл/м. На расстоянии r0 =20 см от стержня находится заряд Q1 =10 нКл, равноудаленный от концов, стержня. Определить силу F взаимодействия точечного заряда с заряженным стержнем.

Решение. Закон Кулона позволяет вычислить силу взаимодействия точечных зарядов. По условию задачи, один из зарядов не является точечным, а представляет собой заряд, равномерно распределенный по длине стержня. Однако если выделить на стержне дифференциально малый участок длиной dl, то находящийся на нем заряд dQ=t·dl можно рассматривать как точечный и тогда по закону Кулона сила взаимодействия между зарядами Q1 и dQ:

, (1)

где r — расстояние от выделенного элемента до заряда Q1. Здесь и далее, если в условии задачи не указана среда, имеется в виду, что заряды находятся в вакууме (e=1).

Из чертежа (рис. 25) следует, что и , где

r0 — расстояние от заряда Q1 до стержня. Подставив эти выражения в формулу (1), получим

. (2)

Следует иметь в виду, что — вектор, поэтому, преждечеминтегрировать разложим его на две составляющие: , перпендикулярную стержню, и , параллельную ему.

Из рис. 25 видно, что dF1 = dF cosa, dF 2= dF sina. Подставляя значение dF из выражения (2) в эти формулы, найдем:

.

Интегрируя эти выражения в пределах от – b до + b, получим

В силу симметрии расположения заряда Q1 относительно стержня интегрирования второго выражения дает нуль

Таким образом, сила, действующая на заряд Q1

. (3)

Из рис. 25 следует, что . Подставив это выражение sin b в формулу (3), получим

. (4)

Произведем вычисления по формуле (4):

Пример 4. Электрическое поле создано двумя точечными зарядами: Q1 =30 нКл и Q2 = –10 нКл. Расстояние d между зарядами равно 20 см. Определить напряженность электрического поля в точке, находящейся на расстоянии r1 =15 см от первого и на расстоянии r2 =10 см от второго зарядов.

Решение. Согласно принципу суперпозиции электрических полей, каждый заряд создает поле независимо от присутствия в пространстве других зарядов. Поэтому напряженность электрического поля в искомой точке может быть найдена как векторная сумма напряженностей и полей, создаваемых каждым зарядом в отдельности: .

Напряженности электрического поля, создаваемого в вакууме первым и вторым зарядами, соответственно равны

(1)

Вектор (рис. 26) направлен по силовой линии от заряда Q1, так как заряд Q1 >0; вектор направлен также по силовой линии, но к заряду Q2, так как Q2 <0.

Модуль вектора Е найдем по теореме косинусов:

, (2)

где угол a может быть найден из треугольника со сторонами r1, r2 и d:

.

В данном случае во избежание громоздких записей вычислим отдельно значение cosa. По этой формуле найдем

cosa =0,25.

Подставляя выражения E1 и E2 а по формулам (1) в равенство (2) и вынося общий множитель 1/(4pe 0) за знак корня, получаем

.

Подставив значения величин p, e 0, Q1, Q2, r1, r2 и cosa в последнюю формулу и произведя вычисления, найдем

Пример 5. Электрическое поле создано двумя параллельными бесконечными заряженными плоскостями с поверхностными плотностями заряда s 1 =0,4 мкКл/м2 и s 2 =0,1 мкКл/м2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.

Решение. Согласно принципу суперпозиции, поля, создаваемые каждой заряженной плоскостью в отдельности, накладываются друг на друга, причем каждая заряженная плоскость создает электрическое поле независимо от присутствия другой заряженной плоскости (рис. 27).

Напряженности однородных электрических полей, создаваемых первой и второй плоскостями, соответственно равны:

; .

Плоскости делят все пространство на три области: I, II и III. Как видно из рисунка, в первой и третьей областях электрические силовые линии обоих полей направлены в одну сторону и, следовательно, напряженности суммарных полей Е(I) и E(III) в первой и третьей областях равны между собой и равны сумме напряженностей полей, создаваемых первой и второй плоскостями: Е(I)= E(III) = E1+E2, или

Е(I)= E (III) = .

Во второй области (между плоскостями) электрические силовые линии полей направлены в противоположные стороны и, следовательно, напряженность поля E(II) равна разности напряженностей полей, создаваемых первой и второй плоскостями: E(II)=|E1-E2|,или

.

Подставив данные и произведя вычисления, получим

E(I)=E(III)= 28,3 кВ/м; E(II) =17 кВ/м.

Картина распределения силовых линий суммарного поля представлена на рис. 28.

Пример 6. На пластинах плоского воздушного конденсатора находится заряд Q =10 нКл. Площадь S каждой пластины конденсатора равна 100 см2 Определить силу F, с которой притягиваются пластины. Поле между пластинами считать однородным.

Решение. Заряд Q одной пластины находится в поле, созданном зарядом другой пластины конденсатора. Следовательно, на первый заряд действует сила (рис. 29)

F=E1Q (1)

где E1 напряженность поля, создаваемого зарядом одной пластины. Но где s – поверхностная плотность заряда пластины.

Формула (1) с учетом выражения для E1 примет вид

.

Подставив значения величин Q, и S в эту формулу и произведя вычисления, получим

F =565 мкН.

 

Пример 7. Электрическое поле создано, бесконечной плоскостью, заряженной с поверхностной плотностью s = 400 нКл/м 2, и бесконечной прямой нитью, заряженной с линейной плотностью t =100 нКл/м. На расстоянии r =10 см от нити находится точечный заряд Q =10 нКл. Определить силу, действующую на заряд, ее направление, если заряд и нить лежат в одной плоскости, параллельной заряженной плоскости.

Решение. Сила, действующая на заряд, помещённый в поле,

F=EQ, (1)

где Е — напряженность поля в точке, в которой находится заряд Q.

Определим напряженность Е поля, создаваемого, по условию задачи, бесконечной заряженной плоскостью и бесконечной заряженной нитью. Поле, создаваемое бесконечной заряженной плоскостью, однородно, и его напряженность в любой точке

. (2)

Поле, создаваемое бесконечной заряженной линией, неоднородно. Его напряженность зависит от расстояния и определяется по формуле

. (3)

Согласно принципу суперпозиции электрических полей, напряженность поля в точке, где находится заряд Q, равна векторной сумме напряженностей и (рис. 30): . Так как векторы и взаимно перпендикулярны, то

.

Подставляя выражения E1 и E2 по формулам (2) и (3) в это равенство, получим

,

или

.

Теперь найдем силу F, действующую на заряд, подставив выражение Е в формулу (1):

. (4)

Подставив значения величин Q, e 0, s, t, p и r в формулу (4) и сделав вычисления, найдем

F =289 мкН.

Направление силы , действующей на положительный заряд Q, совпадает с направлением вектора напряженности поля. Направление же вектора задается углом a к заряженной плоскости. Из рис. 30 следует, что

, откуда .

Подставив значения величин p, r, s и t в это выражение и вычислив, получим

a=51°3¢

 

Пример 8. Точечный заряд Q =25 нКл находится в ноле, созданном прямым бесконечным цилиндром радиусом R= 1 см, равномерно заряженным с поверхностной плотностью s =2 мкКл/м2. Определить силу, действующую на заряд, помещенный от оси цилиндра на расстоянии r =10 см.

Решение. Сила, действующая на заряд Q, находящийся в поле,

F=QE, (1)

где Е — напряженность поля в точке, в которой находится заряд Q.

Как известно, напряженность поля бесконечно длинного равномерно заряженного цилиндра

E = t /(2p e0r), (2)

где t — линейная плотность заряда.

Выразим линейную плотность t через поверхностную плотность s. Для этого выделим элемент цилиндра длиной l и выразим находящийся на нем заряд Q1 двумя, способами:

Q1=sS=s2pRl и Q1 = t l.

Приравняв правые части этих равенств, получим t l =2p Rls. После сокращения на l найдем t =2p Rs. С учетом этого формула (2) примет вид E=Rs /(e0r). Подставив это выражение Е в формулу (1), найдем искомую силу:

F=QsR /(e0r). (3)

Так как R и r входят в формулу в виде отношения, то они могут быть выражены в любых, но только одинаковых единицах.

Выполнив вычисления по формуле (3), найдем

F =25×10-9×2×10-6×10-2/(8,85×10-12×10×10-2)H=565×10-6H=565мкH.

Направление силы совпадает с направлением вектора напряженности , а последний в силу симметрии (цилиндр бесконечно длинный) направлен перпендикулярно цилиндру.

 

Пример 9. Электрическое поле создано тонкой бесконечно длинной нитью, равномерно заряженной с линейной плотностью t =30 нКл/м. На расстоянии а =20 см от нити находится плоская круглая площадка радиусом r =1 см. Определить поток вектора напряженности через эту площадку, если плоскость ее составляет угол b =30° с линией напряженности, проходящей через середину площадки.

Решение. Поле, создаваемое бесконечно равномерно, заряженной нитью, является неоднородным. Поток вектора напряженности в этом случае выражается интегралом

, (1)

где En проекция вектора на нормаль к поверхности площадки dS. Интегрирование выполняется по всей поверхности площадки, которую пронизывают линии напряженности.

Проекция Еп вектора напряженности равна, как видно из рис. 31,

Еп cosa,

где a — угол между направлением вектора и нормалью . С учетом этого формула (1) примет вид

.

Так как размеры поверхности площадки малы по сравнению с расстоянием до нити (r << a), то электрическое поле в пределах площадки можно считать практически однородным. Следовательно, вектор напряженности очень мало. меняется по модулю и направлению в пределах площадки, что позволяет заменить под знаком интеграла значения Е и cosa их средними значениями < E > и <cosa> и вынести их за знак интеграла:

Выполняя интегрирование и заменяя < E > и <cosa> их приближенными значениями ЕA и cos aA, вычисленными для средней точки площадки, получим

Ф E = ЕA cos aAS =p r 2 ЕA cosa A. (2)

Напряженность ЕA вычисляется по формуле EA =t/(2pe 0 a). Из рис. 31 следует cos aA =cos(p/2 —b)=sinb.

С учетом выражения ЕA и cos aA равенство (2.) примет вид

.

Подставив в последнюю формулу данные и произведя вычисления, найдем

Ф E =424 мВ·м.

 

Пример 10. Две концентрические проводящие сферы радиусами R1 =6 см и R2= 10 см несут соответственно заряды Q1 =l нКл и Q2 = – 0,5 нКл. Найти напряженность Е поля в точках, отстоящих от центра сфер на расстояниях r1 =5 см, r2 =9 см, r3 =15см. Построить график Е (r).

Решение. Заметим, что точки, в которых требуется найти напряженности электрического поля, лежат в трех областях (рис. 32): область I (r < R1), область II (R1 < r2 < R2), область III (r3 > R2).

1. Для определения напряженности E1 в области I проведем сферическую поверхность S1 радиусом r1 и воспользуемся теоремой Остроградского—Гаусса. Так как внутри области I зарядов нет, то согласно указанной теореме получим равенство

, (1)

где En — нормальная составляющая напряженности электрического поля.

Из соображений симметрии нормальная составляющая En должна быть равна самой напряженности и постоянна для всех точек сферы, т. е. En=E1= const. Поэтому ее можно вынести за знак интеграла. Равенство (1) примет вид

.

Так как площадь сферы не равна нулю, то E1 =0, т. е. напряженность поля во всех точках, удовлетворяющих условию r1<R1, будет равна нулю.

2. В области II сферическую поверхность проведем радиусом r2. Так как внутри этой поверхности находится, заряд Q1,тодля нее, согласно теореме Остроградского—Гаусса,можно записать равенство

. (2)

Так как En = E2 =const, то из условий симметрии следует

, или ES2 = Q1 /e0,

откуда

E2 = Q 1/(e0 S2).

Подставив сюда выражение площади сферы, получим

E2 = Q 1/(4 ). (3)

3. В области III сферическую поверхность проведем радиусом r3. Эта поверхность охватывает суммарный заряд Q1 + Q2. Следовательно, для нее уравнение, записанное на основетеоремыОстроградского — Гаусса, будет иметь вид

.

Отсюда, использовав положения, примененные в первых двух случаях, найдем

. (4)

Убедимся в том, что правые части равенств (3) и (4) дают единицу напряженности электрического поля

.

Выразим все величины в единицах СИ (Q1 =10-9 Кл, Q2 = –0,5·10-9 Кл, r2 =0,09 м, r3 =0,15м, l/(4pe 0)=9×109 м/Ф) и произведем вычисления:

4. Построим график E (r). В области I (r<R1) напряженность E =0. В области II (R1 r<R2) напряженность E2 (r) изменяется по закону 1/ r2. В точке r=R1 напряженность E2 (R1)= Q1 /(4pe 0R )=2500 В/м. В точке r=R2 (r стремится к R2 слева) E2 (R2) =Q1 /(4pe 0R )=900В/м. В области III (r > R2) E3 (r) изменяется по закону 1/ r2, причем в точке r=R2 (r стремится к R2 справа)
Е3 (R2)=(Q1 – |Q2 |)/(4pe 0R )=450 В/м. Таким образом, функция Е (r) в точках r = R1 и r=R2 терпит разрыв. График зависимости Е (r)представлен на рис. 33.

Пример 11. Положительные заряды Q1 =3 мкКл и Q2 =20 нКл находятся в вакууме на расстоянии r1 =l,5 м друг от друга. Определить работу A, которую надо совершить, чтобы сблизить заряды до расстояния r2 =1 м.

Решение. Положим, что первый заряд Q1 остается неподвижным, а второй Q2 под действием внешних сил перемещается в поле, созданном зарядом Q1, приближаясь к нему с расстояния r1 =1,5 м до r2 =1 м.





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 429 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2780 - | 2342 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.