Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Требования к оформлению контрольной работы 4 страница




и связано с угловым ускорением вала соотношением:

, (1)

где r — радиус вала.

Угловое ускорение вала выражается основным уравнением динамики вращающегося тела:

, (2)

где М — вращающий момент, действующий на вал; J — момент инерции вала. Рассматриваем вал как однородный цилиндр. Тогда его момент инерции относительно геометрической оси равен

J= 1/2 m 1 r 2.

Вращающий момент М, действующий на вал, равен произведению силы натяжения Т шнура на радиус вала: М=Тr.

Силу натяжения шнура найдем из следующих соображений. На гирю действуют две силы: сила тяжести , направленная вниз, и сила натяжения шнура, направленная вверх. Равнодействующая этих сил вызывает равноускоренное движение гири. По второму закону Ньютона, m 2 g – T=m2a, откуда T=m2 (g – а). Таким образом, вращающий момент M=m 2(g—а) r.

Подставив в формулу (2) полученные выражения М и J, найдем угловое ускорение вала:

Для определения линейного ускорения гири подставим это выражение в формулу (1). Получим

,

откуда

.

 

Пример 15. Через блок в виде диска, имеющий массу m =80 г, перекинута тонкая гибкая нить, к концам которой подвешены грузы массами m 1=100 г и m 2=200 г (рис. 11). С каким ускорением будут двигаться грузы, если их предоставить самим себе? Трением пренебречь.

Решение. Применим к решению задачи основные законы поступательного и вращательного движения. На каждый из движущихся грузов действуют две силы: сила тяжести , направленная вниз, и сила натяжения нити, направленная вверх.

Так как вектор ускорения груза m 1 направлен вверх, то T 1> m 1 g. Равнодействующая этих сил вызывает равноускоренное движение и, по второму закону Ньютона, равна T 1т 1 g=т 1 а, откуда:

T 1 =m 1 g+m 1 a. (1)

Вектор ускорения груза т 2 направлен вниз; следовательно, T 2< m 2 g. Запишем формулу второго закона для этого груза:

m 2 gT 2 =m2a, откуда

T 2 =m2g – m2а. (2)

Согласно основному закону динамики вращательного движения, вращающий момент М, приложенный к диску,равен произведению момента инерции J диска на его угловое ускорение :

M=J . (3)

Определим вращающий момент. Силы натяжения нитей действуют не только на грузы, но и на диск. По третьему закону Ньютона, силы и , приложенные к ободу диска, равны соответственно силам T 1 и Т 2, но по направлению им противоположны. При движении грузов диск ускоренно вращается по часовой стрелке; следовательно, > . Вращающий момент, приложенный к диску, равен произведению разности этих сил на плечо, равное радиусу диска, т. е. M =() r. Момент инерции диска J=mr 2/2, угловое ускорение связано с линейным ускорением грузов соотношением . Подставив в формулу (3) выражения М, J и , получим

() r =

откуда

=(т /2) а.

Так как =T 1 и = Т 2, то можно заменить силы и вы­ражениями по формулам (1) и (2), тогда:

m2g – m2a – m1g – m1a= (m/2) a, или(m2—m1) g= (m2+m1+m /2) a

откуда:

(4)

Отношение масс в правой части формулы (4) есть величина безразмерная. Поэтому значения масс m 1, m 2 и m можно выразить в граммах, как они даны в условии задачи. После подстановки получим:

 

Пример 16. Маховик в виде диска массой m =50 кг и радиусом r =20 см был раскручен до частоты вращения 1=480 мин-1 и затем предоставлен самому себе. Вследствие трения маховик остановился. Найти момент М сил трения, считая его постоянным для двух случаев: 1) маховик остановился через t =50 с; 2) маховик до полной остановки сделал N= 200 оборотов.

Решение. 1.По второму закону динамики вращательного движения, изменение момента импульса вращающегося тела равно произведению момента силы, действующего на тело, на время действия этого момента:

M t=J — J ,

где J — момент инерции маховика; и — начальная и конечная угловые скорости. Так как =0 и t = t, то Mt= – J , откуда:

M = – J /t. (1)

Момент инерции диска относительно его геометрической оси равен J=1/2mr2. Подставив это выражение в формулу (1), найдем

M= – mr2 / (2 t). (2)

Выразив угловую скорость через частоту вращения 1 и произведя вычисления по формуле (2), найдем:

М= – 1 Н·м.

2. В условии задачи дано число оборотов, сделанных махови­ком до остановки, т. е. его угловое перемещение. Поэтому приме­ним формулу, выражающую связь работы с изменением кинетиче­ской энергии:

или, учтя, что ,

(3)

Работа при вращательном движении определяется по формуле A=Mj. Подставив выражения работы и момента инерции диска в формулу (3), получим:

M = – mr 2 /4.

Отсюда момент силы трения:

М=mr 2 /4 . (4)

Угол поворота j= 2 N =2·3,14·200 рад=1256 рад. Произведя вычисления по формуле (4), получим:

М= – 1 Н·м.

Знак минус показывает, что момент силы трения оказывает тормозящее действие.

 

Пример 17. Платформа в виде диска радиусом R = 1,5 м и массой m 1 = 180 кг вращается по инерции около вертикальной оси с часто­той =10 мин-1. В центре платформы стоит человек массой т 2=60 кг. Какую линейную скорость относительно пола помещения будет иметь человек, если он перейдет на край платформы?

Решение. По закону сохранения момента импульса,

(1)

где J 1 — момент инерции платформы; J 2 момент инерции человека, стоящего в центре платформы; — угловая скорость платформы с человеком, стоящим в ее центре; J2' — момент инерции человека, стоящего на краю платформы; — угловая скорость платформы с человеком, стоящим на ее краю.

Линейная скорость человека, стоящего на краю платформы, связана с угловой скоростью соотношением:

. (2)

Определив из уравнения (1) и подставив полученное выражение в формулу (2), будем иметь:

v= (J 1 +J 2) R /(J 1 +J' 2). (3)

Момент инерции платформы рассчитываем как для диска; следовательно, J 1= 112m 1 R2. Момент инерции человека рассчитываем как для материальной точки. Поэтому J 2=0, J' 2 =m 2 R 2. Угловая скорость платформы до перехода человека равна .

Заменив в формуле (3) величины J 1, J 2, J' 2. и их выражениями, получим:

Сделав подстановку значений т 1, т 2, , R и , найдем линейную скорость человека:

Пример 18. Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения 1=0,5 c-1. Момент инерции jo тела человека относительно оси вращения равен 1,6 кг·м2. В вытянутых в стороны руках человек держит по гире массой m =2 кг каждая. Расстояние между гирями l 1=l,6 м. Опре­делить частоту вращения 2, скамьи с человеком, когда он опустит руки и расстояние l 2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.

Решение. Человек, держащий гири (рис. 12), составляет вместе со скамьей замкнутую механическую систему, поэтому момент импульса J этой системы должен иметь постоянное значение. Следовательно, для данного случая

J1 = J2 ,

где J и — момент инерции тела человека и угловая скорость скамьи и человека с вытянутыми руками; J 2 и — момент инерции тела человека и угловая скорость скамьи и человека с опу­щенными руками. Отсюда:

= (J 1/ J 2) .

Выразив в этом уравнении угловые скорости и через частоты вращения 1 и 2 ( =2 ) и сократив на 2 , получим:

2=(J1/J2) 1. (1)

Момент инерции системы, рассматриваемой в данной задаче, равен сумме момента инерции тела человека J0 и момента инерции гирь в руках человека. Так как размер гирь много меньше расстояния их от оси вращения, то момент инерции гирь можно определить по формуле момента инерции материальной точки: J=mr2. Следовательно,

J 1= J 0+2 m (l 1/2)2;

где т — масса каждой из гирь; l 1 и l 2. — первоначальное и конечное расстояние между гирями. Подставив выражения J 1 и J 2 в уравнение (1), получим:

. (2)

Выполнив вычисления по формуле (2), найдем

2=1,18 с-1.

 

Пример 19. Стержень длиной l =1,5 м и массой М= 10 кг может вращаться вокруг неподвижной оси, проходящей через верх­ний конец стержня (рис. 13). В середину стержня ударяет пуля массой m =10 г, летящая в горизонтальном направлении со скоростью vo =500 м/с, и застревает в стержне. На какой угол отклонится стержень после удара?

Решение. Удар пули следует рассматривать как неупругий: после удара и пуля, и соответствующая точка стержня будут двигаться с одинаковыми скоростями.

Рассмотрим подробнее явления, происходящие при ударе. Сначала пуля, ударившись о стержень, за ничтожно малый промежуток времени приводит его в движение с угловой скоростью и сообщает ему кинетическую энергию

(1)

где — момент инерции стержня относительно оси вращения.

Затем стержень поворачивается на искомый угол , причем центр масс его поднимается на высоту . В отклоненном положении стержень будет обладать потенциальной энергией

(2)

Потенциальная энергия получена за счет кинетической энергии и равна ей по закону сохранения энергии. Приравняв правые части равенств (1) и (2), получим

Отсюда

.

Подставив в эту формулу выражение для момента инерции стержня , получим

(3)

Чтобы из выражения (3) найти , необходимо предварительно определить значение . В момент удара на пулю и на стержень действуют силы тяжести, линии действия которых проходят через ось вращения и направлены вертикально вниз. Моменты этих сил относительно оси вращения равны нулю. Поэтому при ударе пули о стержень будет справедлив закон сохранения момента импульса. В начальный момент удара угловая скорость стержня , поэтому его момент импульса . Пуля коснулась стержня и начала углубляться в стержень, сообщая ему угловое ускорение и участвуя во вращении стержня около оси. Начальный момент импульса пули , где — расстояние точки попадания от оси вращения. В конечный момент удара стержень имел угловую скорость , а пуля — линейную скорость , равную линейной скорости точек стержня, находящихся на расстоянии от оси вращения. Так как , то конечный момент импульса пули .

Применив закон сохранения импульса, можем написать:

, или ,

откуда:

, (4)

где — момент инерции стержня.

Если учесть, что в (4) , а также что , то после несложных преобразований получим:

(5)

Подставив числовые значения величин в (5), найдем

рад = 0,5 рад.

По (3) получим:

Следовательно, =9°20'

 

Пример 20. Из пружинного пистолета был произведен выстрел вертикально вверх. Определить высоту h, на которую поднимается пуля массой m = 20 г, если пружина жесткостью k = 196 Н/м была сжата перед выстрелом на х = 10 см. Массой пружины пренебречь.

Решение. Система пуля — Земля (вместе с пистолетом) яв­ляется замкнутой системой, в которой действуют консервативные силы — силы упругости и силы тяготения. Поэтому для решения задачи можно применить закон сохранения энергии в механике. Согласно этому закону, полная механическая энергия системы в начальном состоянии (в данном случае перед выстрелом) равна полной энергии в конечном состоянии (когда пуля поднялась на высоту h), т. е.

= , или , (1)

где и — кинетические энергии системы в начальном и конечном состояниях; и — потенциальные энергии в тех же состояниях.

Так как кинетические энергии пули в начальном и конечном состояниях равны нулю, то равенство (1) примет вид

= . (2)

Если потенциальную энергию в поле тяготения Земли на ее поверхность принять равной нулю, то энергия системы в начальном состоянии равна потенциальной энергии сжатой пружины, т. е.

, а в конечном состоянии — потенциальной энергий пули на высоте , т. е. .

Подставив приведенные выражения и в формулу (2), найдем

; .

Произведя вычисления по последней формуле, получим h= 5 м.

Пример 21. Точка совершает колебания по закону , где А =2 см. Определить начальную фазу φ, если

x (0)= см и (0)<0. Построить векторную диаграмму для момента t =0.

Решение. Воспользуемся уравнением движения и выразим смещение в момент t =0 через начальную фазу:

.

Отсюда найдем начальную фазу:

.

Подставим в это выражение заданные значения x (0) и А: . Значению аргумента удовлетворяют два значения угла:

и .

Для того чтобы решить, какое из этих значений угла φ удовлетворяет еще и условию , найдем сначала :

.

Подставив в это выражение значение t =0 и поочередно значения начальных фаз и , найдем:

; .

Так как всегда A >0 и ω >0, то условию удовлетворяет только первое значение начальной фазы. Таким образом, искомая начальная фаза .





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 349 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2437 - | 2356 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.