Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интерполяционные формулы центральных разностей




 

Для функции y=f(x) заданной в равноотстоящих узлах центральные разности определяются соотношением

; ; , (6.10)

которое с учётом нисходящих и восходящих разностей имеет вид

Dy-n, Dy-n+1,…, Dy-2, Dy-1, Dy0 ,, Dy1,y2,…,yk-1,yn (4.11)

Узлы интерполирования в этом случае размещены симметрично относительно x0, а их значения

, ±n.

Значение f(x) в точке xi<x<xi+1, не совпадающей с узлом интерполирования, может быть определено с помощью полинома Стирлинга

, (6.12)

где t=(x-x0)/h, - центральные разности.

Погрешность формулы Стирлинга

. (6.13)

Формулу (6.12) используют для интерполирования в середине интервала [a,b], около конца и начала его (в последнем случае (6.12) даёт более точный результат). Центральную точку x0 выбирают так, чтобы –0,5 £t£ 0,5.

Знание центральных разностей позволяет использовать при интерполяции полином Бесселя

Интерполирование функции с не равноотстоящими узлами

 

Для произвольно заданных узлов интерполяции можно воспользоваться формулой Лагранжа или многочленом Ньютона. Интерполяционный полином Лагранжа имеет формулу

(6.14)

или в развёрнутом плане

(6.15)

Погрешность при вычислении определяется выражением

 

, (6.16)


где ; i= 0,1,2,..., n; формула (6.15) имеет большую точность для средних отрезков , она менее эффективна для крайних отрезков. Значения независимой переменной в формуле могут быть как равно-, так и не равноотстоящими.

 

Примеры

№1 Найти значение интерполирующего полинома для функции y=ex заданной таблицей.

х 3,50 3,55 3,60 3,65 3,70
у 33,115 34,813 36,598 38,475 40,447

 

на интервале [3,5; 3,6] с шагом =0,05.

Решение. Составим таблицу с нисходящими конечными разностями для заданных точек функции y=ex

 

х у Δу Δ2 у Δ3 у
3,50 3,55 3,60 3,65 3,70 33,115 34,813 36,598 38,475 40,447      

 

Отмечаем, что значения конечных разностей третьего порядка примерно одинаковы, а это значит, что нужно использовать полином Pn(x) степени n=3. Для х0=3,50 и у0=33,115, мы имеем отыскиваемый полином в виде.

или с учетом значений

 

№2 Необходимо найти значение функции y(x) для x1=1,2173 по данным таблицы.

 

x y
1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260 0.106044 0.106491 0.106935 0.107377 0.107818 0.108257 0.108696 0.109134 0.109571 0.110008

 

Найдем для этого случая нисходящие конечные разности.

i xi yi Δуi Δ2 уi
  1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260 0.106044 0.106491 0.106935 0.107377 0.107818 0.108257 0.108696 0.109134 0.109571 0.110008 0.000447 0.000444 0.000442 0.000441 0.000439 0.000439 0.000438 0.000437 0.000437 - -0.000003 -0.000002 -0.000001 -0.000002 -0.000001 -0.000001 - -

 

Отметим, что, начиная со второго порядка, конечные разности примерно одинаковы. Следовательно, воспользуемся полиномом Ньютона второго порядка, для x=1,2173.

 

№3 Пусть yx функция заданная таблицей с неравноотстоящими значениями аргумента.

x y
0,103 0,108 0,115 0,120 0,128 0,136 0,141 0,150 2,01284 2,03342 2,06070 2,07918 2,10721 2,13354 2,14922 2,17609

 

Нужно вычислить значение функции для x1=0,112.

Воспользуемся формулой Лагранжа

где используются разделенные разности.

Составим таблицу этих разностей.

 

xi yi f(xi,xi+1) f(xi,xi+1,xi+2)
0,103 0,108 0,115 0,120 0,128 0,136 0,141 2,01284 2,03342 2,06070 2,07918 2,10721 2,13354 2,14922 4,116 3,896142 3,696 3,503750 3,291250 3,136 - -18,238166 -16,761833 -14,788461 -13,281250 -11,942307 - -

 

Затем определяем f(0,112) двумя методами, для x0 равным соответственно 0,103 и 0,108:

 

В результате имеем f(0,112) ≈ 2,04922.

№4 Оттискать эмпирическую формулу для функции yx заданной таблично.

 

X            
y 5.2 8.0 10.4 12.4 14.0 15.2

 

Вычислим нисходящие конечные разности второго порядка

 

x y Δy Δ2 y
  5.2 8.0 10.4 12.4 14.0 15.2 2.8 2.4 2.0 1.6 1.2 -0.4 -0.4 -0.4 -0.4

из таблицы видим, что , а это значит необходим полином Ньютона второй степени. Запишем его в виде

y = 5,2 + 2,8x – x(x – 1)

в итоге имеем

 

y = 5,2 + 3x – 0,2x2.

№5 Пусть yx заданнасвоими значенияи в нижеприведенной таблице. Необходимо вычислить значение yx для аргумента x=0,304, используя полиномы Ньютона первого и второго порядков.

x y
0,29 3,25
0,30 3,17
0,31 3,12
0,32 3,04
0,33 2,98
0,34 2,91

 

Полином Ньютона первого порядка

y(0,304) = y0 + q∙Δy0;

h(x) = x1- x0 = 0,31-0,30 = 0,01.

Δy0 = y1- y0 = 3,12 - 3,17 = -0,05.

y(0,304) = 3,17 + 0,4 ∙ (-0,05);

y(0,304) = 3,15.

Полином Ньютона второго порядка

Δ2y0 = Δ1y1 – Δ1y0 = 3,04 – 3,12 – (-0,05) = -0,03.

y(0,304) = 3,153.

 

Варианты заданий

6.1. Найти значение функции, используя формулу Лагранжа по данным таблицы

Таблица 1

х у   Вариант № х
0,43 0,48 0,55 0,62 0,70 0,75 1,63597 1,73234 1,87686 2,03345 2,22846 2,35973     0,702 0,512 0,645 0,736 0,608

 

 

Таблица 2

х y   Вариант № х
0,02 0,08 0,12 0,17 0,23 0,30 1,02316 1,09590 1,14725 1,21483 1,30120 1,40976     0,102 0,114 0,125 0,203 0,154

 

6.2. Найти значения функции, используя полиномы Ньютона для начала и конца интервала интерполяции.

 

Таблица 3

х у   Вариант № х
1,375 1,380 1,385 1,390 1,395 1,400 5,04192 5,17744 5,32016 5,47069 5,62968 5,79788     1,3832 1,3926 1,3862 1,3934 1,3866

 

Таблица 4

х у   Вариант № х
0,115 0,120 0,125 0,130 0,135 0,140 8,65729 8,29329 7,95829 7,64893 7,36235 7,09613     0,1264 0,1315 0,1232 0,1334 0,1285

 

Таблица 5

х y   Вариант № х
0,150 0,155 0,160 0,165 0,170 0,175 6,61659 6,39989 6,19658 6,00551 5,82558 5,65583     0,1521 0,1611 0,1662 0,1542 0,1625

Контрольные вопросы





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 796 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2220 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.