Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Критерий устойчивости Найквиста




Критерий Найквиста ориентирован на представление динамических свойств системы в виде структуры с единичной обратной связью (рис.2.1). Для анализа устойчивости положения равновесия в нуле и, следовательно, устойчивости всех других решений линейного ДУ

Д(p)y(t) = B(p) ν(t), p ≡ d/dt, (2.9)

он использует амплитудно-фазовую характеристику , разомкнутой системы и число q правых корней в характеристическом уравнении разомкнутой системы

D(p)=Д(p)–B(p)=0. (2.10)

Условия устойчивости для статических систем по критерию Найквиста формулируются следующим образом.

Пусть система, показанная на рис. 2.1, устойчива в разомкнутом состоянии, q = 0. Она будет устойчива в замкнутом состоянии тогда и только тогда, когда АФХ W(jω) не охватывает критическую точку (-1,j0). Если же АФХ охватывает критическую точку (-1,j0), то система неустойчива в замкнутом состоянии.

Если АФХ проходит через т.(-1,j0), то в характеристическом уравнении замкнутой системы имеется пара чисто мнимых корней, а остальные левые. Последний вариант соответствует критическому случаю теорем Ляпунова об анализе устойчивости по уравнениям 1-го приближения. На рис. 2.2 приведены кривые иллюстрирующие поведение АФХ для случая 1 – устойчивой, 2 – неустойчивой и 3 – критический случай (граница устойчивости линейной системы).

 
 

 


Рис. 2.2.

 

Для анализа устойчивости астатических систем их АФХ

 

в разомкнутом состоянии на комплексной плоскости приходится дополнять дугами радиуса R = ∞ и центральным углом, равным νπ/2, отсчитываемым от положительного направления вещественной оси по направлению часовой стрелки. На рис. 2.3 приведены АФХ с их дополнениями систем с порядком астатизма ν = 1 (рис.2.3,а) и ν= 2 (рис. 2.3,б).

После дополнения АФХ астатических систем удовлетворяют условиям устойчивости, приведенным для статических систем.

Степень удаления АФХ устойчивой системы от критической точки (-1,j0) оценивается по величине запасов устойчивости по амплитуде и фазе.

Запасом устойчивости по фазе называют дополнение γ угла φ(ωс), где ωс – частота среза, до значения –π по часовой стрелке. Численно запас γ определяется выражением γ = π + φ (ωс). Частота среза определяется условием | W(jωc) | = R(ωc) = 1.

Запасом устойчивости по амплитуде называют минимальную из величин (R(ωπ1),R-1π2)), где частоты определяются условием

 
 

 

 


 

Рис. 2.3.

 

φ(ω) = - π, наименее удаленные от критической точки (-1,j0).

Запасы устойчивости удобно определять графически. Для этого на комплексной плоскости с годографом вектора W(jω),ω [0,∞) проводят окружность единичного радиуса с центром в начале координат плоскости. В точке пересечения окружности и АФХ частоты ω = ωс, arg W(jωс) = φ(ωc). По графику непосредственно определяются запас по фазе γ и запас по амплитуде H = min (H1 и h-1), как это показано на рис.2.4.

Если вместо АФХ разомкнутой системы использовать ее логарифмические частотные характеристики, то для систем с АФХ I-рода условия устойчивости принимают вид: а) устойчивость ωсπ; б) неустойчивость ωсπ1; в) граница устойчивости ωсπ.

Для сложных систем используется правило переходов Я.З.Цыпкина [5].

 
 

 

 


 

Рис. 2.4

 





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 780 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2311 - | 2015 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.