Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Графическое решение системы линейных неравенств




Для графического решения данной задачи необходимо уметь решать графически системы линейных неравенств с двумя переменными.

Решением линейного неравенства с двумя переменными называется множество пар значений переменных , которые удовлетворяют неравенству. Геометрически решением линейного неравенства является полуплоскость, границей которой является прямая .

Порядок действий:

1) записать уравнение и построить на плоскости граничную прямую;

2) выбрать искомую полуплоскость, координаты точек в которой удовлетворяют заданному неравенству. Для этого подставляют в неравенство координаты точки с известными координатами , не лежащей на граничной прямой. Если получится верное числовое неравенство, то искомая полуплоскость та, которая содержит точку (в противном случае берется другая полуплоскость). Плоскость выделяется штриховкой.

 

 

 

0

 

Отметим, что неравенство определяет правую координатную полуплоскость (от оси ), а неравенство верхнюю координатную полуплоскость (от оси ).

Пример. Решить графически неравенство .

Запишем уравнение граничной прямой и построим её по двум точкам, например, и . Прямая делит плоскость на две полуплоскости.

 

 

 
 


0 2

 


–4

 

 

Координаты точки удовлетворяют неравенству ( – верно), значит, и координаты всех точек полуплоскости, содержащей точку , удовлетворяют неравенству. Решением неравенства будут координаты точек полуплоскости, расположенной справа от граничной прямой , включая точки на границе. Искомая полуплоскость на рисунке выделена.

Решением системы линейных неравенств называется множество пар значений переменных , которые удовлетворяют одновременно всем неравенствам. Геометрически решением системы линейных неравенств является область на плоскости, координаты точек которых лежат в пересечении полуплоскостей.

Решение системы неравенств называется допустимым, если его координаты неотрицательны , . Множество допустимых решений системы неравенств образует область, которая расположенав первой четверти координатной плоскости.

Пример. Построить область решений системы неравенств

Решениями неравенств является:

1) – полуплоскость, расположенная левее и ниже относительно прямой () ;

2) – полуплоскость, расположенная в правой-нижней полуплоскости относительно прямой () ;

3) – полуплоскость, расположенная правее прямой () ;

4) – полуплоскость выше оси абсцисс, то есть прямой () .

 

 

3

1 В

0

Область допустимых решений данной системы линейных неравенств – это множество точек, расположенных внутри и на границе четырехугольника , являющегося пересечением четырех полуплоскостей.

Геометрическое изображение линейной функции (линии уровня и градиент)

Зафиксируем значение , получим уравнение , которое геометрически задаёт прямую. В каждой точке прямой функция принимает значение и является линией уровня. Придавая различные значения, например, ,..., получим множество линий уровня – совокупность параллельных прямых.

Построим градиент – вектор , координаты которого равны значениям коэффициентов при переменных в функции . Данный вектор: 1) перпендикулярен каждой прямой (линии уровня) ; 2) показывает направление возрастания целевой функции.

Пример. Построить линии уровня и градиент функции .

 

 
 


 

 
 


Линии уровня при , , – это прямые , , , параллельные друг другу. Градиент – это вектор , перпендикулярный каждой линии уровня.





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 1345 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2463 - | 2329 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.