Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Примеры. Задача 1. Устройство состоит из 10 независимо работающих элементов




Задача 1. Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за время Т окажется: а) меньше двух; б) не меньше двух.

Решение: а) Обозначим через X дискретную случайную величину - число отказавших элементов за время Т. Тогда ; . Воспользуемся неравенством Чебышева:
. Подставив сюда , , , получим

б) События и противоположны, поэтому сумма их .

Ответ: а) ; б) .

Задача 2. Вероятность появления события в каждом испытании равна . Используя неравенство Чебышева, оценить вероятность того, что число появлений события заключено в пределах от 40 до 60, если будет произведено 100 независимых испытаний.

Решение: Найдем математическое ожидание и дисперсию дискретной случайной величины - числа появлений события в 100 независимых испытаниях: ; .

Найдем максимальную разность между заданным числом появлений и математическим ожиданием .

Воспользуемся неравенством Чебышева в форме . Подставляя , получим .

Ответ: .





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 735 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2514 - | 2363 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.