Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Относительная флуктуация




 

. (1.10)

 

Если x случайным образом изменяется с течением времени, то относительная флуктуация показывает долю времени, в течение которой система находится в состоянии с .

 

Теорема: Относительная флуктуация аддитивной величины, характеризующей систему, уменьшается обратно пропорционально корню квадратному из числа независимых подсистем и для макроскопической системы она мала. Примером аддитивной величины (от лат. additivus – «прибавляемый») является энергия. Флуктуация энергии для макросистемы ничтожно мала, для микросистемы она существенна.

Доказательство

Аддитивная величина X для системы равна сумме значений xk для N независимых подсистем

.

 

По свойству 2 усреднения – среднее от суммы равно сумме средних

 

 

– пропорциональна числу подсистем.

Отклонение от среднего

,

дисперсия

.

 

При возведении в квадрат и усреднении результата для перекрестных произведений учтено свойство 3 усреднения – среднее от произведения независимых величин равно произведению их средних

 

, ,

 

и использовано, что среднее отклонение от среднего равно нулю

 

.

 

Не равными нулю остаются квадраты величин. В результате флуктуация

 

.

Относительная флуктуация

(П.1.11)

 

уменьшается обратно пропорционально корню квадратному из числа независимых подсистем.

Производящая функция. Имеется случайная величина n, которая принимает дискретные значения в интервале . Вероятность получения результата n равна . Определяем производящую функцию

 

. (П.1.14)

 

Если известна производящая функция, то распределение вероятности получаем из (П.1.14)

 

, (П.1.15)

где использовано

 

Условие нормировки (1.6)

требует выполнения

. (П.1.16)

 

Для получения средних значений случайной величины дифференцируем (П.1.14)

,

и находим

. (П.1.17)

 

Двукратное дифференцирование (П.1.14)

 

дает

. (П.1.18)

 

Теорема о произведении производящих функций. Если происходят два независимых вида событий, которые описываются распределениями вероятностей с производящими функциями и , то распределение для суммы событий выражается произведением их производящих функций

. (П.1.19).

 

ХАРАКТЕРИСТИКИ СЛУЧАЙНой

НЕПРЕРЫВНой ВЕЛИЧИНы

 

Случайной непрерывной величиной является, например, проекция скорости молекулы газа, хаотически меняющаяся благодаря столкновениям.

Плотность вероятности. Пусть случайная величина x принимает непрерывные значения в некотором интервале. Вероятность обнаружения x в единичном интервалеоколо выбранного значения называется плотностью вероятности результата

 

. (1.11)

 

Аналогично определение скорости , которая является перемещением за единицу времени.

Вероятность получения результата в интервале равна

 

.

 

Пример: Пусть – скорость частицы идеального газа. Частицы движутся хаотически и при столкновениях меняют свои скорости. Вероятность обнаружения частицы со скоростью в интервале равна

 

,

где

– концентрация частиц со скоростями в интервале шириной ;

n – концентрация частиц со всеми скоростями;

плотность вероятности

 

– вероятность обнаружения частицы со скоростью в единичном интервале около значения v.

Условие нормировки для непрерывного распределения

 

. (1.12)

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 2215 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2476 - | 2272 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.