Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Разложение некоторых элементарных ф-ций в ряде Маклорена




Разложение функции f(x)=ex в ряд Маклорена:

f(x)=f′(x)=f″(x)=…=f(n)(x)=…=ex.

f(0)=f′(0)=f″(0)=…=f(n)(0)=…= 1.

Составим для функции f(x)=ex формально ряд Маклорена:

1+ .

Найдём области сходимости этого ряда.

при любых x, следовательно, областью сходимости ряда является промежуток (-∞;+∞). Заметим, что так как ряд сходится абсолютно, то при любых х и тем более при любых х. Так как f(n+1)(x)=ex и f(n+1)(с)=eс, то =ec =0. Таким образом, имеет место разложение при x (-∞;+∞)

ex =1+

64) Применение рядов к приближенным вычислениям значений ф-ции, определённых интегралов

Eсли подинтегральная функция раскладывается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то возможно приближенное вычисление интеграла с наперед заданной точностью.

Вычислить интеграл с точностью до 0,001.

Решение.

Проверим, можем ли мы отбросить остаток после второго члена полученного ряда.

.

Следовательно, .





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 512 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2280 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.