Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Конічні перетини




 

Нехай задана кругова конічна поверхня, необмежена в обидві сторони від вершини. Внаслідок різних перетинів цієї поверхні і площини можна отримати криві другого порядку (див. рис. 30).

Рис. 30.

1. Якщо площина - осі конічної поверхні, але не проходить через її вершину, то в перетині буде коло .

2. Площина - одній з твірних, тоді в перетині матимемо параболу .

3. Площина перетинає конічну поверхню під кутом до її осі , але жодній з твірних, тоді в перетині буде еліпс .

4. , в перетині - гіпербола .

Вироджені випадки:

5. і проходить через вершину конічної поверхні, в перетині є точка .

6. Площина проходить через вісь , в перетині пара прямих, що перетинаються, наприклад, і .

Першим, хто розглядав криві другого порядку, як конічні перетини був древньогрецький математик Аполлоній (прибл. 262 – 190 роки до н.е.). Його праця “Конічні перетини” мала великий вплив на розвиток науки нових часів – астрономії, механіки, оптики; із його положень виходили французькі математики Р.Декарт (1596 – 1650) і П.Ферма (1601 – 1665) при створенні аналітичної геометрії.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 421 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2513 - | 2360 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.