Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Гіпербола




 

Означення. Гіперболою називається множина точок площини, різниця відстаней яких від двох заданих точок, фокусів, є величина стала і дорівнює .

По аналогії з еліпсом фокуси розміщуємо в точках ,

(див. рис. 25-4).

Рис. 25-4.

 

Оскільки, як видно з рисунка, можуть бути випадки і , то згідно означення .

Відомо, що в трикутнику різниця двох сторін менша третьої сторони, тому, наприклад, з маємо

Отже, для гіперболи .

Далі запишемо значення виразів і через координати точок

Піднесемо до квадрата обидві частини і після подальших перетворень знайдемо

Пропонуємо завершити самостійно

Гіпербола симетрична відносно координатних осей, тому, як і для еліпса, досить побудувати її графік в першій чверті, де . Область визначення для першої чверті .

При маємо одну із вершин гіперболи . Друга вершина . Якщо , то із (40) , – дійсних коренів немає. Говорять, що і – уявні вершини гіперболи. Із співвідношення випливає, що при досить великих значеннях має місце наближена рівність . Тому пряма є лінією, відстань між якою і відповідною точкою гіперболи прямує до нуля при .

Пряма називається асимптотою гіперболи. Згідно з симетрією існує ще одна асимптота .

Для побудови гіперболи необхідно відкласти на координатних осях відрізки довжиною на по обидва боки від точки і аналогічно відкласти по .

Рис. 26.

 

Після цього побудувати прямокутник зі сторонами паралельними координатним осям (див. рис. 26). Діагоналі прямокутника є асимптотами гіперболи. Через вершину в першій чверті проводимо вітку гіперболи, яка асимптотично наближається до прямої

. Інші вітки будуємо симетрично відносно і .

Ексцентриситет гіперболи , бо . Якщо величину зафіксувати, а збільшувати, то при цьому збільшується , тому гіперболи будуть відхилятись від , гіпербола буде розпрямлятись. При зменшені буде зменшуватись , вітки гіперболи будуть наближатись до . У випадку, коли , асимптотами будуть бісектриси координатних кутів,

рівнобічна гіпербола.

 

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 508 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2475 - | 2271 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.