Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Приклади




1. Рівняння описує коло.

2. Рівняння описує параболу.

3. Рівняння розпадається на дві прямі і , що перетинаються.

4. Рівняння , тобто розпадаються на дві паралельні прямі і .

5. Рівняння , тобто розпадається на дві прямі, що збігаються.

6. Рівняння має своїм розв’язком тільки одну точку .

7. Рівняння не описує в області дійсних чисел ніякого геометричного місця точок.

Додамо ще, що при відповідному виборі декартової системи

координат рівняння (36) для кривих другого порядку набувають простий, так званий канонічний вигляд. Далі розглянемо коротко кожну із кривих другого порядку.

 

Коло

 

Означення. Колом називається множина точок площини, які знаходяться на відстані R від заданої точки .

Нехай – центр кола, – довільна точка кола. За умовою , а за формулою відстані між двома точками маємо

 

рівняння кола радіуса з центром в точці .

Якщо ж центр кола збігається з початком координат, , то отримуємо

-канонічне рівняння кола.

Розкриємо дужки в (37) і зведемо його до вигляду (36)

.

 

Отже загальне рівняння (36) може описувати коло, якщо а . За цих умов, щоб знайти центр кола і його радіус, потрібно виділити повний квадрат.

 

Приклад. Знайти центр кола і радіус, якщо

1.

Розв’язання. Згрупуємо відносно і , а тоді виділимо повні квадрати

Отже, центр кола в точці , а радіус . Пропонуємо побудувати це коло.

 

2.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 742 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.