Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Означення 2. Матриці і називаються переставними або комутативними, якщо




Приклад 4.

 

Легко перевірити, що довільна квадратна і одинична матриці комутативні, і при цьому .

Приклад 5. Перевірити останню рівність, якщо

Можна показати, що множення матриць має такі властивості:

де – число;

.

Тут мається на увазі, що всі записані добутки матриць існують.

Приклад 6. Перевірити властивості 1-4, якщо число , а матриці такі:

, , С= .

Розглянемо поняття степеня квадратної матриці.

Означення 3. Квадратом матриці (позначається ) називається добуток , тобто .

Аналогічно вводиться .

Приклад 7. Для матриць і , де

, ,

довести, що , та знайти значення виразів.

Означення 4. Якщо - заданий многочлен і деяка квадратна матриця, то вираз

де - одинична матриця, називається многочленною матрицею.

Приклад 8. Для матриці

Знайти

Обчислити степені квадратних матриць:

9.. 10. 11..

12.. 13.. 14..

Перемножити прямокутні матриці:

15.. 16..

17..

Знайти , якщо задана матриця і функція





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 520 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.