Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Лінійні дії над матрицями




 

Іноді в роботі з таблицями (матрицями) прикладів типу 1–3 із 1.8., доводиться виконувати над ними певні операції. Так, якщо в прикладі 1 потрібно підрахувати заплановий розмір стипендій за семестр (6 місяців), то очевидно необхідно кожний елемент цієї матриці помножити на 6. Виникає необхідність множити матрицю на число.

Якщо в умовах прикладу 2 ми маємо відомості 3-х місяців одного квартала, то можна скласти зведену відомість за квартал, додаючи розміщені у відповідних графах дані стосовно кожного робітника.

Приходимо до дії додавання матриць.


Якщо в умовах прикладу 3, 1.8. позначити через і – результати роботи 3-х змін за першу і другу добу відповідно, то можна знайти сумарні результати за дві доби додаванням відповідних елементів і позначити це

Отже з прикладів бачимо, що цілком природно виникає необхідність дій множення матриці на число і додавання матриць.

Означення 1. Добутком числа на матрицю розміру називається нова матриця того ж розміру, кожний елемент якої дорівнює відповідному елементу матриці помноженному на число , тобто

Матриця (–1) – протилежна матриці , і позначається .

Дія додавання вводиться тільки для матриць одного і того ж розміру.

Означення 2. Сумою двох матриць і розміру називається матриця того ж розміру, кожний елемент якої дорівнює сумі відповідних елементів матриць–доданків, тобто , і позначається .

Якщо ж , то різниця матриць.

Дії додавання, віднімання і множення матриць на число називаються лінійними діями над матрицями.

Можна перевірити, що вони мають такі властивості:

Тут позначено через 0 – нульову матрицю і — протилежну матриці .

Вправа. Перевірити властивості 1–8 для матриць

і чисел .

Приклад. Задані матриці

, .

Знайти 1) ; 2) .

Розв’язання. 1)

.

 

2) .






Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 467 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2150 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.