Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Особенности применения моделей массового обслуживания




Рассмотренные модели массового обслуживания находят ши­рокое применение при исследовании надежности технических си­стем, организации их эксплуатации и использования по назначе­нию, а также при анализе и синтезе автоматизированных систем управления. Достаточно подробно вопросы практического приме­нения моделей СМО рассмотрены в работе [1].

При решении прикладных задач необходимо прежде всего пра­вильно определить, насколько аппроксимирующие предположения, принятые при разработке математических моделей СМО, приемле­мы для реальной системы и каким образом ее специфические осо­бенности можно учесть в типовой модели.

Основными аппроксимирующими предположениями при раз­работке моделей СМО были предположения о том, что все потоки событий являются простейшими. Широкое использование указан­ных предположений обусловливается следующими факторами.

1. Простейший поток событий, как уже отмечалось, носит пре­дельный характер и поэтому часто встречается в практических за­дачах. Так, например, Н. М. Седякин показал, что поток отказов элементов технических систем сводится к простейшему, если

, (2.56)

где ti среднее время наработки i -го элемента данного типа на отказ, а п – число элементов. Если n >10, то это условие выпол­няется и тогда, когда каждый из элементов отказывает через по­стоянные интервалы времени.

2. Простейший поток заявок ставит СМО в наиболее тяжелые условия. И. Н. Коваленко показал, что система, рассчитанная на обслуживание простейшего потока, будет обслуживать любой дру­гой поток с одинаковой интенсивностью более надежно.

3. При простейшем потоке заявок показатели эффективности СМО с отказами и ограниченным временем ожидания практически не зависят от вида закона распределения времени обслуживания, а определяются его средним значением. Показатели эффективности реальной СМО при простейшем потоке заявок не хуже значений этих показателей, вычисленных в предположении об экспоненци­альном распределении времени обслуживания.

4. При указанных предположениях можно получить аналитиче­скую модель системы и на основе ее исследования найти ее опти­мальные параметры. Простая модель позволяет разобраться в ос­новных закономерностях явления, наметить «ориентиры» для по­строения статистической модели системы, позволяющей учесть те особенности реальной системы, которые трудно (или невозможно) учесть при аналитическом исследовании. Сочетание простых ана­литических моделей и статистического моделирования вероятност­ных систем на ЭВМ — один из основных методов современного на­учного исследования.

При решении прикладных задач всегда необходимо учитывать возможность использования результатов исследования стационар­ного режима для оценки эффективности системы на конечных ин­тервалах времени. Характеристики стационарного режима с до­статочной для практики точностью можно использовать для про­цессов длительностью (3¸4)×1/ m [1].

При исследовании СМО предполагалось, что обслуживающие приборы абсолютно надежны. Если вероятность успешного обслу­живания заявки Р <1, то ее влияние на эффективность СМО можно учесть через Pотк В этом случае

,

где Р 0 отк вероятность отказа для системы с абсолютно надежны­ми приборами (Р=1).

Все рассмотренные модели СМО относятся к классу так назы­ваемых разомкнутых систем, в которые поступает неограниченный поток заявок и его параметры не зависят от процесса обслужива­ния. Однако на практике часто встречаются системы, когда поток заявок ограничен и его параметры зависят от процесса обслужи­вания (замкнутые системы).

Типичным примером замкнутой системы является следующая система. Имеется п ремонтных мастерских, которые предназначены для обслуживания и ремонта т технических систем. Технические системы отказывают только в период эксплуатации с интенсивностью l (в период ремонта l =0), производительность каждой мастерской m. Число возможных состояний данной систе­мы m+ 1 (k= 0, 1, 2,..., т – число технических систем, требую­щих ремонта). Граф состояний данной системы для п= 2, т= 5(рис. 2.8) свидетельствует о том, что для ее исследования нельзя использовать ни одну из рассмотренных моделей СМО. При ее ис­следовании необходимо непосредственно использовать выражения (2.16) и (2.17) для процесса «гибели и размножения».


Приведенный пример показывает, что при выборе модели СМО для решения конкретной задачи ошибки можно исключить, если построить размеченный граф состояний. На основе анализа разме­ченного графа состояний в некоторых случаях можно установить, что для исследования системы, по формальным признакам не от­носящейся к системам массового обслуживания, можно использо­вать одну из известных моделей СМО.

При решении прикладных задач следует также всегда отличать показатели эффективности L, от ограничений, накладывае­мых на параметры СМО: т, . Показатели L, исполь­зуются для оценки эффективности СМО, а параметры т, определяются спецификой процесса обслуживания и физическими свойствами заявок (например, емкость хранилищ в ремонтном ор­гане, время старения информации и так далее).

Задачи, решаемые с помощью моделей СМО, можно разделить на два основных класса. К первому классу относятся задачи ана­лиза эффективности систем и определения числа обслуживающих приборов, обеспечивающих требуемые значения показателей ее эф­фективности. Ко второму классу относятся задачи определения числа и типа (производительности) обслуживающих приборов.






Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 603 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2210 - | 2136 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.