Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


СМО с конечной очередью




СМО с конечной очередью длины т характеризуется тем, что при поступлении очередной заявки возможны три исхода:

– заявка немедленно принимается на обслуживание, если в си­стеме в данный момент находится k заявок и k<n;

– заявка становится в очередь, если п £ k<n+m;

– заявка получает отказ и покидает систему, если k=n+m. Следовательно, в любой момент времени система может нахо­диться в одном из п+т+ 1 состояний, то есть множество состояний

Увеличение числа заявок в системе происходит только под воз­действием потока заявок интенсивности l, а уменьшение числа зая­вок в системе — только в результате завершения обслуживания одной из заявок, то есть

(k занятых приборов порождают поток обслуженных заявок ин­тенсивности k m).

 
 

Размеченный граф состояний СМО с конечной очередью для п= 3, т= 2 изображен на рис. 2.5.

Для определения вероятностей состояний системы в формулы (2.16) и (2.17) подставим значения

и получим:

– для k £ n
;

– для k<n
.

Полагая в уравнении (2.17) N=n+m, находим

(2.25)

Учитывая, что a 0/0!=1 и вычисляя сумму т членов геометри­ческой прогрессии со знаменателем r, находим

(2.26)

Из уравнения (2.16) находим вероятности состояний

; (2.27)

(2.28)

На основании формул (2.25) – (2.28) определим основные по­казатели эффективности системы.

1. Вероятность отказа в обслуживании – это вероятность того, что в СМО имеется п+т заявок, то есть

(2.29)

Зная Ротк по формулам (2.19) – (2.21), можно вычислить аб­солютную и относительную пропускную способность системы, сред­нее число занятых приборов, коэффициенты их загрузки и простоя.

2. Вероятность того, что поступившая в систему заявка заста­нет все каналы занятыми (не будет немедленно принята на об­служивание),

. (2.30)

3. Средняя длина очереди

,

где Pn+r вероятность того, что в очереди находится ровно r зая­вок (k=n+r).

Подставляя в полученное выражение Pn+r, находим

; (2.31)

. (2.32)

4. Среднее время ожидания в очереди определяется как мате­матическое ожидание. Если к моменту поступления заявки в оче­реди находится r= 0, 1,..., т– 1 заявок, то она поступит на об­служивание после завершения обслуживания r+ 1 заявок, то есть

;

. (2.33)

Среднее время ожидания – это среднее время на­копления очереди длиной L.

Среднее число заявок, находящихся в СМО, и среднее время пребывания заявки в системе определяются по формулам (2.22) и (2.23) с учетом формул (2.31) – (2.33).

Из полученных соотношений следует, что показатели Ротк, q, Nз, L, Y не зависят от конкретных значений l и m, а только от их соотношения a. Показатели напротив, чувствительны к изменению не только параметра a, но и к изменению l при a =const. Так, например, при увеличении l и m в два раза Ротк, q, nз и L не изменяются, Q увеличивается, а уменьшается в два раза, то есть при одновременном увеличении плотности потоков зая­вок и обслуживании характеристики процесса обслуживания улуч­шаются.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 505 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.