Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Электронные семейства элементов




Принадлежность элемента к электронному семейству определяется характером заполнения энергетических подуровней:

s- элементы – заполнение внешнего s - подуровня при наличии на предвнешнем уровне двух или восьми электронов, например:

Li 1s2 2s2

s -элементы являются активными металлами, характерные степени окисления которых численно равны количеству электронов на последнем уровне:

+1 для щелочных металлов и +2 для элементов второй группы

р- элементы – заполнение внешнего p- подуровня, например:

F 1s2 2s2 2p5

Элементы от В до Ne включительно образуют первую серию p -элементов (элементы главных подгрупп), в атомах которых наиболее удаленные от ядра электроны располагаются на втором подуровне внешнего энергетического уровня.

d- элементы – заполнение предвнешнего d- подуровня, например:

V 1s22s22p63s23p64s2 3d3

d- элементы относятся к металлам.

f- элементы – заполнение f- подуровня второго снаружи уровня, например:

Nd 1s2 2s2 2p2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f4

f- элементы – это элементы семейств актиноидов и лантаноидов.

Квантовая механика, сравнивая электронные конфигурации атомов приходит к следующим теоретическим выводам:

1. Строение внешней оболочки атома является периодической функцией зарядового числа атома Z.

2. Поскольку химические свойства атома определяются строением внешней оболочки, из предыдущего пункта следует: химические свойства элементов находятся в периодической зависимости от заряда ядра.

Контрольные вопросы

1. Ядерная модель строения атома. Изотопы (радионуклиды).

2. Квантово - механическая модель строения атома.

3. Квантовые числа (главное, орбитальное, магнитное, спиновое).

4. Строение электронных оболочек атомов. Принцип Паули. Принцип наименьшей энергии. Правило Гунда.

5. Электронно-структурные формулы атомов. Гибридизация атомных орбиталей.

6. Характеристики атома. Атомный радиус. Электроотрицательность. Сродство к электрону. Энергия ионизации. S, p, d, f – электронные семейтсва атомов.

 

Типовые задачи

 

     Задача № 1.Радиусы ионов Na+ и Cu+ одинаковы (0,098 нм). Объяснить различие температур плавления хлорида натрия (801°С) и хлорида меди(I) (430°С).

       Решение:

       При одинаковых зарядах и размерах ионов Na+ и Cu+,ион Cu+ имеет 18 – электронную внешнюю оболочку и более сильно поляризует анион Cl-, чем ион Na+, обладающий электронной структурой благородного газа. Поэтому в хлориде меди(I) в результате поляризации с аниона на катион переносится более значительная часть электронного заряда, чем в хлориде натрия. Эффективные заряды ионов в кристалле CuCl становятся меньше, чем NaCl, а электростатическое взаимодействие между ними – более слабое. Этим объясняется более низкая температура плавления CuCl в сравнении с NaCl, кристаллическая решётка которого близка к чисто ионному типу.

 

       Задача №2. Как обозначается состояние электрона а) с n=4,L=2; б) с n=5,L=3.

       Решение: При записи энергетического состояния цифрой указывают номер уровня (n), а буквой - характер подуровня (s, p, d, f). При n=4 и L=2 записываем 4d; при n=5 и L=3 записываем 5f.

 

       Задача № 3. Сколько всего орбиталей соответствует третьему энергетическому уровню? Сколько электронов на этом уровне? На сколько подуровней расщепляется этот уровень?

       Решение: Для третьего энергетического уровня n=3, количество атомных орбиталей 9(32), что

является суммой 1(s) +3(p) +5(d)=9. По принципу Паули количество электронов на этом уровне 18. Третий энергетический уровень расщепляется на три подуровня: s,p,d (количество подуровней совпадает с числом значений главного квантового числа).

 

       Задача №4. На какие электронные семейства классифицируются химические элементы?

       Решение: Все химические элементы можно классифицировать в зависимости от характера заполняемых подуровней на 4 типа:

s-элементы-заполняют электронами ns подуровень;

p-элементы -заполняют электронами np подуровень;

d-элементы-заполняют электронами (n-1)d подуровень;

f-элементы –заполняют электронами (n-2)f подуровень;

 

       Задача № 5. Какой подуровень заполняется в атоме электронами после заполнения подуровня: а) 4р; б)4s

       Решение: А) подуровню 4р отвечает сумма (n+1), равная 4+1=5. Такой же суммой характеризуются подуровни 3d (3+2=5) и 5s (5+0=5). Однако состоянию 3d отвечает меньшее значение n (n=3), чем состоянию 4р, поэтому подуровень 3d будет заполняться раньше, чем подуровень 4р. Следовательно, после заполнения подуровня 4р будет заполняться подуровень 5s, которому отвечает на единицу большее значение n(n=5).

       Б) подуровню 4s соответствует сумма n+1=4+0=4. Такой же суммой n+1 характеризуется подуровень 3р, но заполнение этого подуровня предшествует заполнению подуровня 4s, т.к. последнему отвечает большее значение главного квантового числа. Следовательно, после подуровня 4s будет заполняться подуровень с суммой (n+1)=5,причем из всех возможных комбинаций n+l, соответствующих этой сумме(n=3, l=2; n=4; l=1; n=5; l=0), первой будет реализоваться комбинация с наименьшим значением главного квантового числа, то есть вслед за подуровнем 4s будет заполняться подуровень 3d.

       Вывод: таким образом, заполнение подуровня d отстает на один квантовый уровень, заполнение подуровня f отстает на два квантовых уровня.

Для написания электронной формулы элемента необходимо: арабской цифрой указать номер энергетического уровня, написать буквенное значение подуровня, количество электронов записать в виде показателя степени.

       Например: 26Fe4  1s22s22p63s23p64s23d6

Электронная формула составлена с учетом конкуренции подуровней, т.е. правила минимума энергии. Без учета последнего электронная формула будет записываться:                  26Fe41s22s22p63s23p63d64s2.

 

Задача № 6. Электронная структура атома описывается формулой 1s22s22p63s23d74s2. Какой это элемент?

       Решение: Этот элемент принадлежит к электронному типу d-элементов 4 периода, т.к. происходит застройка электронами 3d подуровня; число электронов 3d 7 свидетельствует о том, что это седьмой элемент по порядку. Общее число электронов 27,значит порядковый номер 27. Этот элемент кобальт.

 

Тестовые задания

Выберите правильный вариант ответа

 

01.ЭЛЕКТРОННАЯ ФОРМУЛА ЭЛЕМЕНТА ИМЕЕТ ВИД … 5S24D4. УКАЗАТЬ ЧИСЛО ЭЛЕКТРОНОВ В НАРУЖНОМ УРОВНЕ

1) 1

2) 3

3) 4

4) 6

02. МОГУТ ЛИ СУЩЕСТВОВАТЬ В АТОМЕ ДВА ЭЛЕКТРОНА С ОДИНАКОВЫМ НАБОРОМ ВСЕХ ЧЕТЫРЕХ КВАНТОВЫХ ЧИСЕЛ?

1) не могут

2) могут

3) могут только в возбужденном состоянии

4) могут только в нормальном (невозбужденном) состоянии

 

03. КАКОЙ ПОДУРОВЕНЬ ЗАПОЛНЯЕТСЯ ПОСЛЕ ПОДУРОВНЯ 4D?

1) 4f

2) 5s

3) 5p

4) 6p

 

04. ЭЛЕКТРОННАЯ ФОРМУЛА ЭЛЕМЕНТА  ИМЕЕТ ВИД: 1S22S22P63S2. УКАЗАТЬ ЧИСЛО ВАЛЕНТНЫХ ЭЛЕКТРОНОВ

1) 8

2) 3

3) 5

 4) 2

 

05. ЭЛЕКТРОННАЯ ФОРМУЛА ЭЛЕМЕНТА ИМЕЕТ ВИД: 1S22S22P63S23P64S23D7. КАКОЙ ЭТО ЭЛЕМЕНТ?

1)

2)

3)

4)

 

06. КАКОЙ ПОДУРОВЕНЬ ЗАПОЛНЯЕТСЯ ПЕРЕД 4D-ПОДУРОВНЕМ?

1) 4f

2) 5s

3) 6s

4) 6p

 

07. СРЕДИ ПРИВЕДЕННЫХ НИЖЕ ЭЛЕКТРОННЫХ КОНФИГУРАЦИЙ УКАЗАТЬ НЕВОЗМОЖНУЮ

1) 2р3

2) 3р6

3) 2s2

4) 2d2

 

08. ЭЛЕКТРОННАЯ СТРУКТУРА АТОМА ЭЛЕМЕНТА ВЫРАЖАЕТСЯ ФОРМУЛОЙ: 5S24D3. ОПРЕДЕЛИТЬ КАКОЙ ЭТО ЭЛЕМЕНТ.

1)

2)

3)

4)

 

09. У КАКОГО ЭЛЕМЕНТА НАЧИНАЕТСЯ ЗАПОЛНЕНИЕ ПОДУРОВНЯ 4D?

1)

2)

3)

4)

 

10. У КАКОГО ЭЛЕМЕНТА ЗАКАНЧИВАЕТСЯ ЗАПОЛНЕНИЕ ПОДУРОВНЯ 3D?

1)

2)

3)

4)

 

11. ОПРЕДЕЛИТЕ ЭЛЕКТРОННУЮ ЕМКОСТЬ (ВМЕСТИМОСТЬ) ТРЕТЬЕГО ЭНЕРГЕТИЧЕСКОГО УРОВНЯ

1) 3

2) 18

3) 2

4) 32

 

12. СКОЛЬКО ЗНАЧЕНИЙ ПРИНИМАЕТ ML ПРИ L =3?

1) 3

2) 6

3) 7

4) 9

 

 

13. СКОЛЬКО НЕСПАРЕННЫХ ЭЛЕКТРОНОВ В НЕВОЗБУЖДЕННОМ СОСТОЯНИИ ИМЕЕТ АТОМ ФОСФОРА?

1) 1

2) 2

3) 4

4) 5

 

14. КАКИЕ ЗНАЧЕНИЯ ПРИНИМАЕТ ПОБОЧНОЕ КВАНТОВОЕ ЧИСЛО (L), ЕСЛИ ЗНАЧЕНИЕ ГЛАВНОГО КВАНТОВОГО ЧИСЛА (N) РАВНО 3?

1) 0,1, 2

2) 1, 2, 3

3) 3, 4, 5

4) 1,3, 5

 

15. ПРИЗНАКОМ СХОДСТВА ХИМИЧЕСКИХ БИОГЕННЫХ ЭЛЕМЕНТОВ НАТРИЯ И КАЛИЯ ЯВЛЯЕТСЯ ОДИНАКОВОЕ ЧИСЛО

1) электронов внешнего слоя

2) номера группы

3) электронных слоев

4) нейтронов в ядре

 

Контрольные задания

16. Каковы значения квантовых чисел (n, l, m) для орбиталей, входящих в 3d – подуровень?

17. Сколько вакантных 3d – орбиталей имеют атомы в возбуждённом состоянии: а) Cl, б)V, в)Mn?

18. Сколько значений магнитного квантового числа возможно для электронов энергетического подуровня, орбитальное квантовое число которого l = 2? l = 3?

19. Составить электронные формулы атомов и ионов

       а) Cd, б) I-, в) Fe3+, г) S, д) Na+.

Литература

1. Общая химия. Учебник для медицинских вузов / В. А. Попков, С. А. Пузаков.–

Москва: Высшая школа, 2010 г.– С. 15 – 29.

 

2. Практикум по общей химии. Биофизическая химия. Химия биогенных элементов: Учеб. пособие для студентов медицинских спец. вузов / Ю.А. Ершов, А.М. Кононов, С.А. Пузаков и др.; Под ред. Ю.А. Ершова, В.А. Попкова. – Москва.: Высш. шк., 2008. – С.115-12

ХИМИЧЕСКАЯ СВЯЗЬ

Химическая связь – это взаимодействие, которое связывает отдельные атомы в молекулы, ионы, радикалы, кристаллы.

Основным условием образования химической связи является понижение полной энергии многоатомной системы по сравнению с энергией изолированных атомов, т.е. ЕАВАВ в случае образования вещества АВ из А и В. Более точно химическую связь можно определить как взаимодействие атомов, обусловленное перекрыванием их электронных облаков, и сопровождающееся уменьшением полной энергии системы.

Основными параметрами химической связи является её длина, прочность и валентные углы, характеризующие строение веществ, которые образованы из отдельных атомов.

Длина связи – это межъядерное расстояние между химически связанными атомами.

Угол между воображаемыми прямыми, проходящими через ядра химически связанных атомов, называется валентным углом.

Энергия связи – энергия, необходимая для разрыва связи.

Ионная связь

Для объяснения ионной связи необходимо уяснить себе следующие понятия:

Потенциал ионизации – энергия, которую необходимо затратить для удаления 1-го электрона с внешней орбитали, при этом атом переходит из нейтрального в положительно заряженный ион (катион).

Чем меньше потенциал ионизации, тем легче атом теряет электроны, тем сильнее выражены у электрона металлические свойства. Потенциал ионизации растет в пределах периода слева направо, уменьшается сверху вниз.

Атом может не только терять электроны, но и присоединять. Энергия, которая выделяется при присоединении электронов к атому, называется сродством к электрону. Чем больше эта энергия, тем более неметалл этот элемент. Сродство к электрону увеличивается слева направо, уменьшается сверху вниз. Условная величина, характеризующая способность атома притягивать к себе электроны называется электроотрицательностью. Она равна полусумме потенциала ионизации и энергии сродства к электрону:  ( ядра). Электроотрицательность растет слева направо и уменьшается сверху вниз (увеличение числа электронных оболочек). Наиболее электроотрицательный элемент – .

В зависимости от величины электроотрицательности все элементы делятся на:

1. электроположительные (элементы 1-3 группы)

2. электроотрицательные (все остальные элементы)

Ионная связь образуется между элементами сильно отличающимися по электроотрицательности, а именно DЭ>1,9.

Полинг ввел шкалу электроотрицательности.

Ионная связь образуется за счет перехода одного или нескольких электронов от одного атома на внешнюю оболочку другого атома.

Атом, отдавший электрон становится положительно заряженным, а получивший – отрицательно заряженный.

Связь между разноименными ионами осуществляется за счет сил электростатического притяжения.

Образование ионной связи происходит по октаэдрическому правилу. Согласно этому правилу атом принимает, теряет или разделяет электроны таким образом, чтобы электронное облако для него соответствовало ближайшему инертному газу.

1S22S22P63S1 ()            1S22S22P63S23P5 ()

1S22S22P6 ()                 1S22S22P63S23P6 ()

Ионная связь наиболее характерна для неорганических соединений.

 

 

Ковалентная связь

Тип химической связи между атомами, возникающей при обобществлении электронов, которые принадлежат этим атомам.

Для объяснения ковалентной связи используют 2 метода квантово-механического расчета:

1. метод валентных связей (МВС)

2. метод молекулярных орбиталей (ММО)

Согласно методу валентных связей ковалентная связь образуется не путем передачи, а путем обобществления неспаренных электронов с антипараллельными спинами по 1-му от каждого атома. Образовавшаяся в этом случае электронная пара принадлежит обоим атомам. – обозначение ковалентной связи.

Чем в большей степени перекрываются атомные орбитали, тем прочнее связь.

Перекрывание атомных орбиталей возможно лишь при их определенной взаимной ориентации в пространстве.

Ковалентная связь в отличие от ионной имеет направленность.

Атомные орбитали могут перекрываться двумя способами:

1-ый способ: перекрывание в направлении главных осей (осей, связывающих ядра).

 

Образовавшаяся при этом перекрывании ковалентная связь называется s-сигма связь.

2-ой способ: P-орбитали с параллельными осями.

 

 

Боковое перекрывание образует p-связь, менее прочную связь чем s- сигма.

 В соответствии с правилом Паули между двумя атомами может быть либо 1s-сигма связь, либо 1s-сигма и 1p-связь, либо 1s-сигма и 2p-связи.

Связи:

 одинарная 1s −

 двойная 1s+1p =

 тройная 1s+2p ≡

При увеличении кратности, длина уменьшается:

одинарная – 1,54

двойная – 1,34

тройная – 1,2

Так как нахождение 2-х электронов в поле действия 2-х ядер энергетически выгоднее, чем пребывание каждого электрона в поле своего ядра, то в образовании ковалентной связи принимает участие все одноэлектронные орбитали внешнего энергетического уровня. Например, атом азота имеет три неспаренных электрона на внешнем уровне и может образовывать за счет таких электронов 3 ковалентных связи. Число неспаренных электронов может увеличиваться при переходе атома в возбужденное состояние за счет “расспаривания”: у  в этом случае атом способен образовывать 4 связи. “Расспаривание” электрона требует затраты энергии, которая компенсируется при образовании связей.

При участии в образовании s-связей орбиталей разных типов, например, в молекуле  следовало бы ожидать формирование связей, отличающихся друг от друга по длине и прочности. Однако все связи равноценны и располагаются симметрично друг другу. В рамках МВС эти факты объясняются на основе концепции гибридизации атомных валентных орбиталей. Согласно ей в валентных состояниях электроны распределяются не на чистых S и P орбиталях, а на смешанных (гибридных). Число гибридных равно числу атомных орбиталей. Гибридные орбитали одинаковы по форме и энергии. В отличии от атомных орбиталей гибридные более вытянуты в направлении образования химической связи.

Типы гибридизаций:

SP3 – гибридизация – при взаимодействии 1S и 3P орбиталей,

SP2 – гибридизация – при взаимодействии 1S и 2P орбиталей,

SP – гибридизация – при взаимодействии 1S и 1P орбиталей

Доля s-орбитали составляет:

SP- гибридизации – 50%,

SP2- гибридизации – 34%,

SP3- гибридизации – 25%.

 

 

МВС не всегда объясняет ряд свойств веществ: спектральные, магнитные.

Метод молекулярных орбиталей предполагает, что при образовании ковалентной связи атомные орбитали образуют молекулярные орбитали. С позиции ММО каждый электрон принадлежит всей молекуле и движется в поле всех её ядер и электронов, т. е. находится на орбитали, охватывающей всю молекулу. Такая орбиталь называется молекулярной. Молекулярная орбиталь (МО) представляет собой линейную комбинацию атомных орбиталей: yAB=yA+yB. При сложении волновых функций атомных орбиталей образуется связывающая молекулярная орбиталь. При вычитании образуется разрыхляющая молекулярная орбиталь. При переходе атомных орбиталей в связующую молекулярную орбиталь происходит уменьшение энергии, а при разрыхляющих – энергия увеличивается. Связывающая молекулярная орбиталь характеризуется повышением электронной плотности между двумя ядрами.

Образование связывающей и разрыхляющей МО из исходной АО:

 

Согласно ММО образование химического соединения возможно только тогда, когда число электронов на связывающей МО больше числа электронов на разрыхляющих.

Полуразность числа электронов на связывающих и разрыхляющих орбиталях называется порядком связи.

 - порядок связи (валентность)

 

 

Ковалентная связь характеризуется длиной, энергией, полярностью, поляризуемостью и имеет определённую направленность в пространстве.

С увеличением кратности связи, длина связи уменьшается:

0,154 нм

= 0,134 нм

0,12 нм

Энергия связи – энергия, которую надо затратить, чтобы разорвать химическую связь. Тоже количество энергии выделяется при образовании химической связи. С увеличением кратности связи, энергия увеличивается. Энергия p-связи меньше энергии s-связи.

Ковалентная связь может быть:

1. полярной (если атомы различаются по электроотрицательности, то электронная пара будет смещаться к атому с большей электроотрицательностью)

2. неполярной (между атомами 1-го типа, с одинаковой электроотрицательностью)

 

Мерой полярности служит дипольный момент: , где

−заряд электрона,

−расстояние между центрами заряда.

С увеличением электроотрицательности одного из атомов полярность молекулы увеличивается.

Процесс смещения электронной пары к наиболее электроотрицательному атому называется поляризацией.

Поляризуемость – динамическая поляризация, способность молекулы изменять свою полярность под действием внешнего электрического поля. Поляризуемость уменьшается с уменьшением размера атома:

> > >

 

3. Координационная связь – (донорно-акцепторная) может рассматриваться, как результат наложения ионных и ковалентных связей

 

Координационная связь, как и ковалентная связь обладает определенной жесткостью, однако атомы, образующие эту связь несут на себе  как в ионной связи. При образовании координационной связи атомы приобретают заряды. Образование координационной связи происходит в результате обобщения пары электронов, принадлежащих только одному атому – донору, в то время как второй является акцептором, имеющим свободную орбиталь.

Классический пример образования иона аммония:

 

 2P

 2S ↑ ↑ ↑

 ↓↑      

           

2S22Px12Py12Pz1

 

Разновидностью донорно-акцепторной связи является семиполярная связь. Она образуется, как и донорно-акцепторная, но донор заряжён положительно «+», а акцептор отрицательно «−».

 

 

Металлическая связь

При обычных условиях металлы, за исключением ртути Hg, существуют в виде кристаллов. Взаимодействие, удерживающее атомы металлов в едином кристалле, называется металлической связью.

Природа металлической связи подобна ковалентной связи: оба типа связи основаны на обобществлении валентных электронов. Однако в атомах металлов количество таких электронов меньше количества вакантных орбиталей. Электроны слабо удерживаются ядром. Поэтому они могут переходить из одной орбитали в другую. Стремясь принять более устойчивое состояние, а это структура инертного газа, атомы металлов довольно легко отдают валентные электронные электроны, превращаясь в положительно заряжённые ионы. Внутри этой решётки находятся валентные электроны, которые не принадлежат конкретно какому-то атому. Благодаря малым размерам электроны более или менее свободно перемещаются по всему объёму кристаллической решётки, поэтому возникает большое число многоцентрированных орбиталей. Электроны на этих орбиталях обобщены сразу несколькими атомами.

Благодаря свободному перемещению электронов металлы обладают высокой электрической проводимостью и теплопроводностью.

По прочности металлическая связь меньше ковалентной связи в 3-4 раза. Металлическая связь не имеет определённой направленности в пространстве. Электроны сталкиваясь с ионами образуют нейтральные частицы, которые сразу теряют электроны: . Электронные газы отражают световые лучи.

В результате движения внутри решётки электроны способны переносить тепловую энергию от нагретых участков к ненагретым, этим объясняется теплопроводность.

Если приложить нагрузку к металлу, происходит деформация без разрушения решётки, металлам характерна ковкость, пластичность.

 

5. Водородная связь – одна из разновидностей межмолекулярного взаимодействия

Когда очень электроотрицательный атом (, , ) связан с атомом , последний в результате смещения электронной пары ковалентной связи к наиболее электроотрицательному атому становится настолько электроно-дефицитным, что начинает проявлять остаточное сродство к электрону и поэтому он способен образовывать донорную связь:

 

 

Различают водородную связь: межмолекулярную и внутримолекулярную.

 

 

Энергия водородной связи на 1, 2 порядка меньше энергии ковалентной связи.

 





Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 2196 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2284 - | 2081 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.