Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод выделения квадратов (Лагранжа).




Базис  называется каноническим для симметричной (эрмитовой) билинейной функции, если ее матрица в этом базисе диагональная.

Теорема 4.3 Лагранжа. Для любой эрмитовой функции существует канонический базис.

Доказательство проведём индукцией по рангу r матрицы эрмитовой формы F. Если r =0, то матрица нулевая, утверждение очевидно. Допустим, что теорема верна для r -1. Докажем ее истинность для r. Рассмотрим три случая

а) , тогда положим  и , где k >1. В данном случае матрица перехода S будет отличаться от единичной матрицы только первой строкой, равной  и S [ x ]=[ x ’], Q [ x ’]=[ x ], где  . Матрица Q отличается от единичной матрицы только первой строкой, равной (1, ,…, ). После замены координат, получим матрицу билинейной формы , которая имеет следующий блочный вид . Поскольку ранг  равен r -1, то по предположению индукции эрмитову матрицу  можно привести к каноническому виду. Пусть . Тогда  и теорема в этом случае доказана.

б)  и существует k, что  переставим первый и k базисные вектора, и далее перейдем к пункту а).

в)  для всех k и найдётся не нулевой элемент , где . Возможны два случая:

  1.  тогда прибавим к k базисному вектору l базисный вектор и получим случай б)
  2.  тогда прибавим к k базисному вектору l базисный вектор, умноженный на i, и получим случай б). Теорема доказана.

Базис эрмитовой билинейной функции f (x,y) называется нормальным, если матрица билинейной функции в этом базисе имеет диагональный вид, и ее главная диагональ равна (1,..,1,-1,..,-1,0..,0).

Для отыскания матрицы перехода можно поступать следующим образом. Припишем к матрице F единичную матрицу справа. Затем будем производить элементарные преобразования со строками расширенной матрицы и столбцами матрицы F. Причем, если к строке k прибавим строку j, умноженную на число , то затем к столбцу k прибавим столбец j, умноженный на число . После приведения матрицы F к диагональному виду справа будет расположена матрица, все элементы которой комплексно сопряжены к матрице перехода.

Следствие 4.5 Для эрмитовой формы существует нормальный базис если поле R или C.

Доказательство. Построим канонический базис. Далее, если , то умножим j базисный вектор на число . Затем перестановкой базисных векторов приведем матрицу к нормальному виду.

Следствие 4.6 Если все угловые миноры матрицы F отличны от нуля, то существует верхняя треугольная матрица Q, которая приводит F к диагональному виду.

Доказательство проведем индукцией по рангу F. По теореме Лагранжа существует матрица Q, приводящая F к диагональному виду. Докажем, что она верхняя треугольная матрица. Обозначим через  угловой минор j -го порядка матрицы F. Так как , то выполняется пункт а) теоремы Лагранжа. Матрица перехода Q верхняя треугольная. Угловой минор матрицы  порядка k -1, умноженный на , равен  (угловому минору порядка k матрицы F). По предположению индукции, найдется

верхняя треугольная матрица Q’, приводящая матрицу  к диагональному виду. Но тогда  - верхняя треугольная матрица, а  - диагональная матрица.





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 222 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2492 - | 2239 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.