Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Расстояния. Псевдорешения. Нормальные решения. Нормальные псевдорешения.




Расстоянием между множествами X и Y называется .

Рассмотрим задачу нахождения расстояния от точки x до подпространства W. В начале рассмотрим случай, когда подпространство задано в виде линейной оболочки системы векторов.

Теорема 2.5. Расстояние от точки до подпространства достигается на перпендикуляре, опущенном из точки x на подпространство.

Доказательство. Представим . Расстояние от точки x до подпространства W равно . Векторы  и  ортогональны друг другу, и по неравенству Бесселя , причем равенство достигается только в случае . Тем самым установлено , что и требовалось.

Пусть  и система векторов  линейно независимая. Расстояние от точки x до подпространства W можно найти как отношение объема k +1-мерного параллелепипеда натянутого на векторы  к объему k -мерного параллелепипеда натянутого на векторы . Таким образом, справедлива формула . К сожалению, эта формула не позволяет находить проекцию и ортогональную составляющую вектора. Для нахождения проекции можно поступать следующим образом. Представим  и , а затем умножим скалярно на векторы  вектор x. Получим систему линейных уравнений . Коэффициенты при неизвестных образуют матрицу Грама, определитель которой не равен нулю. Следовательно, система имеет единственное решение. Решив эту систему, найдем проекцию вектора x, а затем и ортогональную составляющую.

Рассмотрим случай, когда линейное подпространство задано системой однородных линейных уравнений Ax =0. Для простоты проведения рассуждений будем считать, что строки матрицы A линейно независимы. В ортонормированном базисе, коэффициенты при неизвестных в уравнении являются координатами вектора из ортогонального дополнения (см. п.2.4). Таким образом, по системе линейных уравнений можно найти базис ортогонального дополнения к пространству W. Обозначим базис  через . Тогда представим  и , а затем умножим скалярно на векторы  вектор x. Получим систему линейных уравнений . Коэффициенты при неизвестных образуют матрицу Грама, определитель которой не равен нулю. Следовательно, система имеет единственное решение. Решив эту систему, найдем ортогональную составляющую вектора x, а затем и проекцию.

Рассмотрим теперь задачу нахождения расстояния от точки x до линейного многообразия M. Эта задача легко сводится к аналогичной задаче построения расстояния от точки до подпространства. Действительно, пусть M = z + W, где z – произвольная точка из M, а W – подпространство. Тогда , то есть задача свелась к определению расстояния от точки x - z до подпространства W.

Линейное многообразие, заданное как множество решений одного линейного уравнения ax = b называется гиперплоскостью. Рассмотрим задачу отыскания расстояния от точки y до гиперплоскости ax = b. Перпендикуляр, опущенный из y на гиперплоскость равен  и . Отсюда находим неизвестный параметр , а затем и расстояние .

Рассмотрим задачу определения расстояния между двумя линейными многообразиями  и . Расстояние между ними равно , то есть задача свелась к нахождению расстояния от точки y - z до подпространства . Заметим, что расстояние между линейными многообразиями достигается на общем перпендикуляре.





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 232 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2452 - | 2334 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.