Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 19 Решение задачи с использованием формулы n-го члена геометрической прогрессии.




Теория Практика
Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и тоже число q, называется геометрической прогрессией. Число q – знаменатель прогрессии. ; Формула n -го члена: Свойство прогрессии: Сумма n -членов:  , Если , то прогрессия называется бесконечно убывающей геометрической прогрессией.   1. В геометрической прогрессии сумма первого и второго членов равна 108, а сумма второго и третьего членов равна 135. Найдите первые три члена этой прогрессии. Решение. 1) Пусть () - данная геометрическая прогрессия. Составим систему . Далее: , . Отсюда , . 2) , Ответ: 48, 60, 75.   2. (Демо 2010, Задание 19). В геометрической прогрессии сумма первого и второго членов равна 108, а сумма второго и третьего членов равна 135. Найдите первые три члена этой прогрессии. Решение. 1) Пусть () - данная геометрическая прогрессия. Составим систему . Далее: , . Отсюда , . 2) , Ответ: 48, 60, 75.

 


 

Модель 1 Баллы Критерии оценки выполнения задания
4 Ход решения верный, оба его шага выполнены, получен верный ответ.
3 Ход решения верный, решение доведено до конца, но допущена одна вычислительная ошибка и ответ отличается от правильного.
0 Другие случаи, не соответствующие указанным критериям
Модель 2 Баллы Критерии оценки выполнения задания
3 Ход решения верный, оба его шага выполнены, получен верный ответ.
2 Ход решения верный, решение доведено до конца, но допущена одна вычислительная ошибка или описка и ответ отличается от правильного.
1 Верно найдены и первый член прогрессии, но решение не завершено. q Или: ход решения верный, но допущены две вычислительные ошибки или описки.
0 Другие случаи, не соответствующие указанным критериям.

Реши сам:

1. Найдите сумму всех натуральных чисел, кратных пяти и меньших 200.

2. Сумма первых четырех членов геометрической прогрессии равна 40, знаменатель прогрессии равен 3. Найдите сумму первых шести членов этой прогрессии.

3. Найдите сумму всех натуральных чисел, кратных трем и не превосходящих 150.

4. Сумма первых трёх членов геометрической прогрессии равна 39, знаменатель прогрессии равен -4. Найдите сумму первых четырёх членов этой прогрессии.

5. В геометрической прогрессии сумма первого и второго членов равна 60, а сумма второго и третьего членов равна 84. Найдите первые три члена этой прогрессии

6. В геометрической прогрессии , . Является ли членом этой прогрессии число 192?

7.Найдите сумму всех отрицательных целых чисел, кратных трем и

больших  - 170.

8.Сумма первых пяти членов геометрической прогрессии равна - 61, знаменатель прогрессии равен -3. Найдите сумму первых шести членов этой прогрессии.

9.Сумма первых трёх членов геометрической прогрессии равна 39, знаменатель прогрессии равен -4. Найдите сумму первых шести членов этой прогрессии.

10. Найдите сумму всех натуральных чисел, не превосходящих 150, которые не делятся на 5.

11. В геометрической прогрессии , . Есть ли среди членов этой прогрессии число 144?

12. Найдите сумму первых шести членов геометрической прогрессии, если ее четвертый член равен , а знаменатель равен .

13. Найдите сумму первых шести членов геометрической прогрессии, если ее пятый член равен , а знаменатель равен .

14. Сумма первого и четвертого членов геометрической прогрессии равна 36, а сумма второго и пятого членов равна 72. Сколько членов этой прогрессии, начиная с первого, нужно сложить, чтобы их сумма была равна 124?

15. Разность пятого и первого членов геометрической прогрессии равна 80, а разность шестого и второго членов равна 240. Сколько членов этой прогрессии нужно сложить, чтобы их сумма была равна 364?

Вернуться в содержание






Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 301 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2214 - | 2087 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.