Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Умножение и деление в множестве действительных чисел




Если длина отрезка а равна х, то мы писали а = xe, где е – единичный отрезок. Для направленных отрезков, лежащих на одной и той же прямой, мы также будем писать а = х · е, считая, что х > 0, если отрезки а и е одинаково направлены, и х < 0, если их направления противоположны (в обоих случаях | х| равен длине отрезка а при единице измерения е). Если е = y · f, где f – новый единичный отрезок, у – это число, модуль которого равен длине отрезка е при единице измерения f, то а = х (уf). Определим произведение чисел х и у как такое число z, что а = zf, т.е. положим, что z = ху в том и только в том случае, когда z · f = х (уf).

Чтобы выяснить, как получить х · у, если заданы числа х и у, заметим, что в силу свойства мультипликативности длина отрезка а при единице измерения f равна | х | · | у |. Направления же отрезков а и f совпадают, если знаки чисел х и у одинаковы, и противоположны, если эти знаки различны. Например, если х < 0 и у < 0, то отрезки а и е имеют противоположные направления, равно как и отрезки e и f, а потому направления отрезков а = [ ОА ] и   f = [ OF ] совпадают (рис. 1а).

   e     f                                             f      e

E       O        F          A       F       O         E          A

а)                                                                      б)

Рис. 1

Если же х > 0 и y < 0, то направления отрезков а = [ ОА ] и е = [ ОЕ ] совпадают, а отрезков е и          f = [ ОF ] противоположны, а потому направления отрезков а и f  противоположны (рис. 1б).

Из сказанного выше следует, что произведение действительных чисел определяется следующим образом.

Произведением чисел х и у называется число z, модуль которого равен произведению модулей множителей, | z | = | x | ·| y |, а знак положителен, если знаки множителей одинаковы, и отрицателен в противном случае. Для любого числа x имеем x ·0 = 0 · x = 0.

Легко доказать, что и в множестве R умножение обладает свойствами коммутативности, ассоциативности и дистрибутивности относительно сложения. Свойством сократимости оно уже не обладает, т.к. из zx = zy нельзя сделать вывод, что x = y; может случиться, что z = 0, но xy, тогда всё равно zx = zy = 0. Если же z ≠ 0, то из zx = zy следует x = y. Таким образом, равенства можно сокращать лишь на отличные от нуля числа.

Если x отлично от нуля, то для любого у Î R найдется такое z, что y = xz. Это число называют частным от деления у на х и обозначают у: х. Таким образом, в R определено деление на любое число, отличное от нуля.

Контрольные вопросы и упражнения

1. Каким числом (рациональным и иррациональным) является значение выражения

2. Истинно ли высказывание:

«Каждое из десятичных приближений числа х является рациональным числом, хотя само число x может быть и иррациональным»?

3. Найдите три первых десятичных знака суммы х + у, разности ху, произведения х · у, частного х: у, если х = 1,73205..., у = 1,41421...

4. Вычислите .

КУРС 5 СЕМЕСТР





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 470 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2668 - | 2233 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.