Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


И при его внепечной обработке




В связи со все возрастающими требованиями к качеству выплавляемых сталей даже "рядовых" назначений, а также благодаря появлению и развитию все новых эффективных средств "борьбы с газам в стали", этому вопросу посвящен ряд работ, в особенности в области вакуумной обработки стали. Учитывая то, что эти работы посвящены главным образом технологии промышленных способов дегазации металла и в меньшей степени теоретическим вопросам, авторы решили здесь лишь в общих чертах осветить эту проблему.

Во всех сталеплавильных агрегатах: подовых печах, кислородных конвертерах и в некоторых переплавных агрегатах металл во время плавки контактирует либо непосредственно с газовой атмосферой, содержащей от нескольких Па до 0,015-0,025 МПа водяного пара, либо этот контакт осуществляется через шлак, покрывающий металл. Водород растворяется в шлаках, либо в форме ионов ОН (в оксидных и карбидных шлаках), либо в форме других ионов в различных "переплавных" шлаках. Скорость поступления водорода в металл через шлак можно в первом приближении оценить через "проницаемость шлака", которую по качественной аналогии с проницаемостью водорода через металлические мембраны и стенки можно характеризовать величиной произведения:

 

S HkHd–1 и S Hm–1d–1, (164)

где S H – растворимость водорода в форме гидроксида, зависящая от химического состава шлака и его температуры;

kH – коэффициент диффузии водорода в шлаке;

d – толщина слоя шлака;

m – динамическая вязкость шлака.

Влиянием химического состава самого металла на растворимость в нем водорода можно пренебречь в связи с незначительностью изменений его состава за время плавки, приведенное выражение, естественно, пригодно только для оценки влияния отдельных входящих в него величин на поступление водорода к металлу и не пригодно для расчета абсолютных значений интенсивности изменений концентрации водорода в металле.

Кроме общеизвестных способов понижения парциального давления водяных паров в атмосфере сталеплавильных агрегатов: подбора соответствующих сортов топлива, просушивание или прокаливание применяемых сыпучих материалов и т.п., в распоряжении сталеплавильщика имеется довольно мощное средство для понижения концентрации водорода в металле. Это окисление углерода и барботирование металла пузырьками оксида углерода. Несмотря на то, что определению энергии перемешивания металла барботирующими пузырьками оксида углерода, изменению при этом коэффициентов тепло- и массопереноса в объеме металла, величине поверхности контакте газа и металла на различных уровнях всплывающих пузырей посвящено большое количество как исследовательских, так и вычислительных работ, все эти вопросы решены лишь приблизительно. Возникавшие при этом трудности связаны с неопределенностью положения участков зарождения пузырьков газа в объеме металла и на контактных поверхностях отдельных пузырьков оксида углерода при различных температурах, составах металла, шлака и активного слоя огнеупорной наварки или набивки при изменяющихся V С, (G / F) или G / F под и т.д.

Твердо установлено, что понижение концентрации в металле водорода и иногда азота связано со стремлением системы металл-инертный газ к равновесию распределения в них "активных" газов – водорода и азота. Значит, в конечном счете все решается законом распределения Сивертса: [ H ]= const и, если , близко к нулю, то и величина [ Н ] уменьшается за счет извлечения водорода в газообразную фазу. В то же время известно, что при увеличении интенсивности выделения оксида углерода, т.е. при увеличении имеет место увеличение массопереноса ионов ОН в шлаке, повышение эффективности контакта металла и шлака и увеличение коэффициента массопереноса водорода из шлака в объем металла.

Изменение концентрации водорода в подовом агрегате в общем виде можно выразить уравнением [191]:

, (165)

где k1 – константа пропорциональности изменения концентрации водорода к изменению содержания углерода, т.е. скорости обезуглероживания;

– скорость поступления водорода из шлака в металл при неподвижной ванне;

kг – константа пропорциональности скорости поступления водорода из шлака в металл и скорости обезуглероживания металла;

G – вес плавки; S – площадь пода печи;

G / S – удельная нагрузка на под.

Из приведенного уравнения видно, что для достижения отрицательных значений d [ H ]/ d t необходима определенная скорость выгорания углерода при определенной нагрузке на под. Практика показала, что на критическую величину V С влияет также ряд других факторов, не учитываемых в принципе приведенным уравнением [135].

При подовых процессах производства стали содержание водорода в металле в той или иной мере повышается после прекращения "кипения" ванны (раскисление металла в печи, "восстановительный" период электроплавки и т.п.). Это объясняется тем, что в отсутствие дегазации металла за счет выделения оксида углерода, продолжается поступление водорода в металл, в первую очередь из шлака вследствие приближения к равновесию распределения водорода между шлаком и металлом. В дальнейшем поступление водорода в металл продолжается вследствие наличия в атмосфере печи водяного пара, откуда водород переходит в шлак, и за счет массопереноса ионов гидроксила к металлу через толщу шлакового слоя. Некоторое торможение этого процесса возможно только за счет повышения в допустимых пределах вязкости шлака.

Некоторый подъем концентрации водорода в металле имеет место и вследствие повышенных концентрация его в присаживаемых раскислителях и легирующих сплавах. В качестве общей рекомендации в деле борьбы с повышением концентрации водорода в металле в конце плавки следует назвать устранение периодов безокислительной выдержки металла в печах и перенос процессов раскисления, легирования и выравнивания состава металла в ковш подобно тому, как это имеет место при конвертерном производстве, а также прокаливание ферросплавов перед их присадкой в металл.

ГЛАВА 7





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 436 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2485 - | 2149 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.