Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Или другие контактирующие фазы




 

Во всех современных процессах производства стали конечным этапом очистки металла от неметаллических включений является переход последних в шлак Это может быть плавильный шлак, под которым была "сварена" сталь, синтетический, например известково-глиноземистый, специальный флюоридный (при электрошлаковом переплаве) и т.п. В отдельных случаях часть твердых включений удаляется из металла за счет спекания или сваривания с поверхностным слоем огнеупоров, а жидкие включения впитываются огнеупорами или просачиваются в них по капиллярным каналам. И, наконец, часть включений по всплытии на поверхность контакта металла с атмосферой образует на ней устойчивую пленку или тонкий слой, включения из которого уже не попадают в толщу металла.

Среди перечисленных механизмов удаления включений основную роль на практике играет ассимиляция включений шлаком. Когда включение всплыло и пришло в контакт со шлаком, его переход в объем последнего (рис. 41 ) сопровождается следующим изменением запаса поверхностной энергии системы:

до перехода в шлак:

sш-в f 1+sм-в f 2= ;

после перехода:

sш-в (f 1+ f 2)+sм-ш f 1= .

Процесс протекает при условии:

 

 
 

D G s=sш-в f 2 –sм-в f 2 +sм-ш<0. (136)

 

 

Это неравенство справедливо для подавляющего большинства неметаллических включений, поскольку многие из них хорошо растворимы в шлаках sш-в@ 0. Для конечных шлаков сталеплавильных процессов sм-ш обычно колеблется в пределах 400-700 мДж/м2, а sм-в (в зависимости от химического состава включений) от 800 до 2200 мДж/м2.

Однако, очень часто переход всплывших включений из металла в шлак тормозится тем, что на поверхности включения остается весьма тонкая металлическая пленка, препятствующая контакту их со шлаком. Как показали исследования на «холодных» моделях [151], эта пленка имеет высокую устойчивость и оказывает некоторое расклинивающее давление, которое препятствует контакту включений и шлака. Поэтому кинетика перехода в шлак твердых кристаллических включений (например, Al 2 O 3) и жидких микроскопических капель (например, силикатов) различается коренным образом. Кристаллические включения легко прокалывают металлическую пленку и, будучи хорошо смачиваемыми шлаком, легко в него переходят. Жидкие включения в свою очередь относительно медленно деформируют и, наконец, прорывают металлическую пленку. Это приводит к повышенной "устойчивости" взвеси (или эмульсии) легкоплавких включений в металле. Вполне возможно, что ошибочный вывод сторонников гипотезы о "проскальзывании" твердых, плохо смачиваемых металлом включений о решающей роли sм-в при движении в гравитационном поле [148] был сделан исходя из результатов измерения скорости очистки металла от включений, т.е. по сути дела, эффективности двух последовательных этапов процесса: всплывания включений и ассимиляции их шлаком. Для более глубокого понимания природы очистки металла от неметаллических включений необходимо поэтапное изучение ее по крайней мере на "холодных", а лучше на "горячих" моделях.

В этом отношении представляют интерес исследования растекания шлака по твердым подложкам, моделирующим неметаллические включения (кварц, муллит или корунд). Критерием скорости поглощения включений шлаком может служить:

a) величина угла смачивания подложки данного состава и данной кристаллической структуры шлаком определенного химического состава, находящегося при определенной температуре, т.е. 0>j= f (C 1, C 2,…, C n, T);

b) скорость растекания шлака по подложке, т.е. скорость изменения неравновесного, "кажущегося" угла смачивания шлаком подложки, т.е. ¶(j2)= f (t) и ¶(j2)/¶t= f ¢(t, C1, C 2,…, C n, T).

Этот вариант моделирования оказался весьма полезен для решения все еще актуальных задач поиска оптимальных составов шлака для очистки металла от включений [150].

Обычно ускорение рафинирования металла от включений, прежде всего оксидных, достигается за счет увеличения поверхности контакта металла и шлака. На этом основаны методы ковшевой (внепечной) обработки металла шлаком. При этом важно предотвратить отрывы мельчайших частичек шлака и захватывание их металлом, что иногда наблюдается. Для устранения этого явления помимо конструктивных и организационных решений, необходимо подобрать шлаки с оптимальными вязкостными и поверхностными свойствами.

В работе [151] дана интересная, хотя практически недоступная для экспериментальной проверки, трактовка процесса ассимиляции включений шлаком, основанная на предположении о возможности диффузионного режима рафинирования раскисленного металла, например, от серы, контактирующим с ним шлаком. При лимитировании этого процесса массопереносом поверхностно-активной серы в металлической фазе отмечены:

1. Неравномерность распределения серы по толщине диффузионного слоя металла ([ S ] понижается по направлению к поверхности металл-шлак);

2. Различная интенсивность адсорбции поверхностно-активного вещества (серы) на лобовой и хвостовой частях всплывающей частицы (неметаллического включения), плохо смачиваемой металлом;

3. Сила, обусловленная этим различием, вызывает движение металлической пленки, охватывающей включение, в сторону более высоких концентраций поверхностно-активного вещества, т.е. более низки значения межфазной энергии на границе неметаллического включения и металла. Следовательно, эта тангенциальная сила, направленная против Архимедовой силы, под действием которой включения всплывают в расплавленном металле.

Эта сила определяется уравнением:

, (137)

где R – радиус включения. По подсчетам авторов [120] она может превышать Архимедову силу даже в 105 раз.

Капиллярное притяжение неметаллических включений шлаком проявляется при условии, что какая-то часть поверхности включения вошла в контакт со шлаком. В общем случае, эта сила, характеризующая способность шлака поглощать неметаллические включения из расплавленного металла, определяется адгезией включений к шлаку (или величиной угла смачивания их шлаком).Сила капиллярного притяжения f ¢кап определяется изменением свободной энергии системы при переходе включения из металла в шлак:

 

, (138)

 

где R – радиус сферического включения, вошедшего в шлак на глубину х по вертикали;

qш-в – угол смачивания включения шлаком;

sм-в межфазная энергия на границе включения и металла.

Авторы [151] считают, что шлак тем легче "перетягивает" из металла включения, чем меньше градиент концентраций поверхностно-активных веществ в диффузионном слое металла (чем меньше fкап), т. e. чем дальше предварительно прошел процесс рафинирования металла от растворенных в нем поверхностно-активных примесей. Достижение равновесия между металлом и шлаком по поверхностно-активным веществам снимает ограничение на переход неметаллических включений через межфазную границу металл-шлак.

Исходя из тех же позиций, в работе [151] также рассмотрена возможность отрыва мельчайших капель шлака и запутывание их в металле. Однако, как уже отмечалось, экспериментальная проверка этих предположений в настоящее время не представляется возможной. Наибольшие сомнения вызывают:

1. Возможность существования на практике диффузионного режима рафинирования металла и, в особенности, лимитирование этого процесса массопереносом в объеме металлической фазы;

2. Неизмеримость размеров неметаллических включений и толщины диффузионного слоя металла.

Из сказанного выше ясно, что большинство закономерностей, управляющих отдельными этапами процесса раскисления и очищения металла от включений основаны на результатах "холодного" моделирования, понятиях коллоидной химии и т.п. Поэтому остаются весьма желательными поиски новых методов проверки этих закономерностей непосредственно на расплавленной стали.

В настоящее время можно составить лишь некоторое представление об итогах всего процесса раскисления и очищения металла от неметаллических включений без фиксации скоростей отдельных этапов процесса (cм. напр. рис.42 и рис. 43) [152]. Даже такая проверка доступна только очень хорошо оборудованным лабораториям, т.к. в настоящее время с достаточной степенью надежности возможно определить только общее содержание кислорода в металле, и в то же время результаты определений содержания кислорода в неметаллических включениях гораздо менее надежны и определенное количество кислорода часто плохо балансируется с общей концентрацией кислорода в металле. Из рис.42 и 43 видно, что сам акт раскисления занимает ничтожно малое время по сравнении с периодом временя, требуемым для удаления включений, который занимает уже 5-10 минут.


Некоторое, безусловно меньшее, значение имеют такие процессы, как поглощение огнеупорами растворенного в металле кислорода, переход жидких продуктов раскисления (например, сплавов или силикатов (FeO)n (МпО)m SiO 2) и прилипание, приваривание или срастание твердых неметаллических включений с поверхностным слоем огнеупоров, контактирующим с металлом. Эти явления обычно проявляются в форме "ошлакованного" поверхностного слоя разливочного припаса (шамотного или высокоглиноземистого) или в виде «зарастания» отверстия разливочного стакана.

 
 

Интересные данные приведены в работе [123], где исследовалось изменение кристаллической структуры магнезитового тигля в процессе плавки в нем металла, раскаляемого продувкой химически чистым аргоном. Изменение при этом концентрации кислорода в металле (см. рис. 44) сопоставлялись здесь с полученными с помощью метода электронных проб и растрового электронного микроскопа данными о проникновении ионов железа, марганца и кремния в рабочий слой магнезита. Результаты исследований, полученных на пористых и плотных (плавленых) тиглях при различных концентрациях кислорода в металле представлены на рисунках 45, 46 и 47.

 
 

Взаимодействие низкоуглеродистого (армко) железа с силикатными (кварцевыми), алюмосиликатными (кварцево-глиноземистыми), шамотными и высокоглиноземистыми огнеупорами многократно исследовалось. Например, в работе [123] взаимодействие огнеупоров с металлом и "коррозия" огнеупоров были исследованы как в статических условиях, так и в условиях вращающегося в расплавленном металле образца огнеупора при наличии слоя шлака и при отсутствии последнего.

Было установлено что:

1. В начале процесса взаимодействия скорость его определяется химическим звеном, т.е. реакцией между растворенным в металле кислородом и другими компонентами расплава с одной стороны и кремнеземом или глинозёмом огнеупоров – с другой;

2. Этот этап процесса имеет место в течение очень короткого времени и его скорость в основном определяется концентрацией кислорода в металле;

3. В дальнейшем скорость "корродирования" огнеупора в присутствии шлаковой фазы определяется скоростью диффузии оксидов железа от поверхности раздела фаз металл-силикатная оболочка огнеупора, образовавшейся вследствие реакции огнеупора со шлаком, к поверхности силикатная оболочка-огнеупор;

4. В этот период скорость процесса является линейной функцией скорости вращения образца огнеупора, т.е. скорости перемещения периферийного слоя огнеупора относительно контактирующего металла и не зависит от концентрации кислорода в металле;

5. Авторы [154] предполагают, что увеличение скорости разрушения огнеупоров тесно связано с повышением текучести шлака, образующегося на контактной поверхности металл-огнеупор.

В рассматриваемой работе в основном исследовалась потеря образца огнеупора в весе во время опытов и, следовательно, не учитывалось приваривание к размягченной поверхности огнеупора твердых включений – продуктов раскисления. Большой интерес, однако, представляет выполненное с помощью растворового электронного микроскопа и рентгеновского микрозонда исследование поверхностного слоя огнеупора, подвергнутого воздействию металлом. Из рисунка 47 видно, что поверхностный слой огнеупора, в соответствие с его химическим составом и тройной диаграммой FeO - Al 2 O 3- SiO 2, имеет относительно невысокую температуру размягчения и следовательно, к нему могут «привариваться» или "прилипать" твердые неметаллические включения.


Таким образом, при контакте расплавленного металла с огнеупорами некоторое развитие получают:

1. Понижение концентрации растворенного в металле кислорода за счет процессов [ O ]+[ Me ]= O 2–+ Me 2+ , где [ Me ] главным образом [ Fe ] и частично [ Mn ], которые имеют место, например, при десульфурирующей обработке металла кусковой или порошкообразной известью;

2. Проникновение легкоплавких включений (силикатов, некоторых алюмосиликатов и т.п.) по капиллярным каналам в толщу огнеупора;

3. "Сваривание" тугоплавких неметаллических включений с размягченной, частично ошлакованной поверхностью огнеупоров.

Такая "очищающая" роль огнеупоров в подавляющем большинстве случаев очень незначительна по сравнению с ассимиляцией неметаллических включений шлаками по ряду причин:

1. Относительно малая удельная поверхность контакта огнеупоров и металла;

2. Весьма малая скорость диффузии даже таких компонентов жидкого металла, как железо и кислород в твердых огнеупорах;

3. Кинетика "сваривания" или "спекания" твердых продуктов раскисления и огнеупоров различного состава изучена недостаточно и скорость этого процесса невелика.

Однако, ролью огнеупоров пренебрегать нельзя, как это видно, например, в случаях “заращивания” отверстий разливочных стаканов. Например, при исследовании с помощью рентгеновского микрозонда рабочей поверхности ствола магнезитового стакана после разливки через него металла, раскисленного алюминием, неоднократно обнаруживали резкий пик излучений алюминия, который не оставлял сомнений в том, что своим происхождением он обязан не диффузии алюминия в магнезите, а «приварившимся» к магнезиту включениям Al 2 O 3

Очень многие исследования, посвященные зарастанию стаканов промежуточных ковшей в установках непрерывной разливки, показали, что это явление всегда связано со скоплениями в металле, при входе его в разливочный стакан, твердых эндогенных включений – продуктов раскисления многими сильными раскислителями (Al, Zr, Ce, La и др.). Такие скопления часто приобретают макроскопические масштабы. Это явление иногда связывают с интенсивным охлаждением металла при прохождении последнего через канал стакана.

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 560 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2327 - | 2084 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.