Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определители и их свойства. Обратная матрица




Определителем (детерминантом) квадратной матрицы

называется число, обозначаемое символически

.

Число есть порядок определителя.

Определитель 2-го порядка вычисляется по правилу

.

 

Пример. .

 

Определители 3-го и более высокого порядка вычисляются на основе их разложения по строке или столбцу на определители более низкого порядка при использовании общих свойств определителей.

Свойства определителей:

1) Величина определителя не меняется при замене строк столбцами и столбцов строками с теми же номерами;

2) Перестановка двух каких-либо строк (столбцов) равносильна умножению определителя на – 1;

3) Определитель, у которого элементы одной строки (или столбца) пропорциональны соответствующим элементам другой строки (столбца), равен нулю. В частности, определитель с двумя одинаковыми строками (столбцами) равен нулю.

Пример. , т. к. элементы 3-го столбца пропорциональны соответствующим элементам 2-го с коэффициентом пропорциональности – 3.

4) Если элементы какой-либо строки (столбца) определителя равны нулю, то он равен нулю.

Пример. .

5) Общий множитель всех элементов какой-либо строки или столбца можно вынести за знак определителя.

Пример. .

6) Если элементы некоторого столбца (или строки) есть сумма двух слагаемых, то определитель равен сумме двух определителей, у которых элементы рассматриваемого столбца (строки) равны соответствующим слагаемым.

Пример. .

7) Если ко всем элементам какого-либо столбца (строки) прибавить слагаемые, пропорциональные соответствующим элементам другого столбца (строки), то величина определителя не изменится.

Пример. (к элементам 1-го столбца прибавлены соответствующие элементы 2-го, умноженные на 2.

Минор элемента в определителе -го порядка есть определитель ()-го порядка, получающийся из данного определителя, если из него вычеркнуть -ю строку и -й столбец.

Пример. Для определителя минор элемента есть , а элемента .

 

Алгебраическое дополнение элемента есть

= ,

т. е. равно минору этого элемента, взятому со знаком «+», если сумма номеров строки и столбца, на пересечении которых он стоит, есть четное число, и знаком «–», если число нечетное.

Пример. Для определителя алгебраическое дополнение элемента есть , а элемента .

Теорема о разложении определителя по строке или столбцу. Определитель равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения.

Вычисление определителя на основе теоремы о разложении облегчается, если выбирается стока (или столбец), содержащие нули. Используя свойство 7), можно преобразовать данный определитель так, чтобы все элементы (кроме одного) какой-либо строки (или столбца) стали нулями. Разлагая затем определитель по этой строке (столбцу), сразу уменьшаем его порядок на единицу.

Пример. Вычислить определитель .

◄ Разлагаем определитель по 3-му столбцу (через чередование знаков, начиная с верхнего левого элемента, верхними правыми индексами проставлены знаки алгебраических дополнений для элементов этого столбца): .

Разлагая данный определитель по второй строке, получаем тот же результат:

= . ►

Обратная матрица

Квадратная матрица называется невырожденной, если она имеет (необходимо единственную) обратную матрицу , определяемую условиями

.

В противном случае матрица вырожденная.

Квадратная матрица =() порядка является невырожденной в том и только в том случае, если ее определитель ; в этом случае обратная матрица есть квадратная матрица того же порядка :

, (1.1.1)

где – алгебраические дополнения элементов в определителе .

Квадратная матрица не вырождена в том и только том случае, если ее строки (столбцы) линейно независимы. Строки (столбцы) матрицы линейно независимы, если ни одна строка (столбец) не могут быть выражены в виде линейной комбинации остальных строк (столбцов). В противном случае строки (столбцы) линейно зависимы.

Если матрицы и не вырождены и число , то

, , .

Пример. Дана матрица . Найти обратную матрицу .

◄ Находим определитель матрицы . Т. к. , делаем вывод, что матрица не вырождена и, следовательно, имеет обратную матрицу. Находим алгебраические дополнения для элементов матрицы:

, , ,

, , ,

, , .

Следовательно, по формуле (1.1.1)

.

Проводим проверку полученного результата:

. Делаем вывод, что результат правильный. ►

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 581 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2438 - | 2357 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.