Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Анализ влияния численности занятых на производствах с вредными и опасными условиями труда и получателей страхового обеспечения на актуарную модель 4 страница




В учебных курсах по теории вероятностей и математической статистике рассматривают различные параметрические семейства распределений числовых случайных величин.

А именно, изучают семейства нормальных распределений, логарифми-чески нормальных, экспоненциальных, гамма - распределений, распределений Вейбулла-Гнеденко и других. Все они зависят от одного, двух или трех параметров. Поэтому для полного описания распределения достаточно знать или оценить одно, два или три числа. Очень удобно. Поэтому широко развита параметрическая теория математической статистики, в которой предполагается, что распределения результатов наблюдений принадлежат тем или иным параметрическим семействам.

К сожалению, параметрические семейства существуют лишь в головах авторов учебников по теории вероятностей и математической статистике. В реальной жизни их нет. Поэтому эконометрика использует в основном непараметрические методы, в которых распределения результатов наблюдений могут иметь произвольный вид.

Сначала на примере нормального распределения подробнее обсудим невозможность практического использования параметрических семейств для описания распределений конкретных экономических данных. Затем разберем параметрические методы отбраковки резко выделяющихся наблюдений и продемонстрируем невозможность практического использования ряда методов параметрической статистики, ошибочность выводов, к которым они приводят. Затем разберем непараметрические методы доверительного оценивания основных характеристик числовых случайных величин - математического ожидания, медианы, дисперсии, среднего квадратического отклонения, коэффициента вариации. Завершат главу методы проверки однородности двух выборок, независимых

В эконометрических и экономико-математических моделях, применяемых, в частности, при изучении и оптимизации процессов маркетинга и менеджмента, управления предприятием и регионом, точности и стабильности технологических процессов, в задачах надежности, обеспечения безопасности, в том числе экологической, функционирования технических устройств и объектов, разработки организационных схем часто применяют понятия и результаты теории вероятностей и математической статистики. При этом зачастую используют те или иные параметрические семейства распределений вероятностей. Наиболее популярно нормальное распределение. Используют также логарифмически нормальное распределение, экспоненциальное распределение, гамма-распределение, распределение Вейбулла - Гнеденко и т.д.

Очевидно, всегда необходимо проверять соответствие моделей реальности. Возникают два вопроса. Отличаются ли реальные распределения от используемых в модели? Насколько это отличие влияет на выводы?

Ниже на примере нормального распределения и основанных на нем методов отбраковки резко отличающихся наблюдений (выбросов) показано, что реальные распределения практически всегда отличаются от включенных в классические параметрические семейства, а имеющиеся отклонения от заданных семейств делают неверными выводы, в рассматриваемом случае, об отбраковке, основанные на использовании этих семейств.

Есть ли основания априори предполагать нормальность результатов измерений?

Иногда утверждают, что в случае, когда погрешность измерения (или иная случайная величина) определяется в результате совокупного действия многих малых факторов, то в силу Центральной Предельной Теоремы (ЦПТ) теории вероятностей эта величина хорошо приближается (по распределению) нормальной случайной величиной. Такое утверждение справедливо, если малые факторы действуют аддитивно и независимо друг от друга. Если же они действуют мультипликативно, то в силу той же ЦПТ аппроксимировать надо логарифмически нормальным распределением.

В прикладных задачах обосновать аддитивность, а не мультипликативность действия малых факторов обычно не удается. Если же зависимость имеет общий характер, не приводится к аддитивному или мультипликативному виду, а также нет оснований принимать модели, дающие экспоненциальное, Вейбулла-Гнеденко, гамма или иные распределения, то о распределении итоговой случайной величины практически ничего не известно, кроме внутриматематических свойств типа регулярности.

При обработке конкретных данных иногда считают, что погрешности измерений имеют нормальное распределение. На предположении нормальности построены классические модели регрессионного, дисперсионного, факторного анализов, метрологические модели, которые еще продолжают встречаться как в отечественной ноpмативно-технической документации, так и в международных стандартах.

На то же предположение опираются модели расчетов максимально достигаемых уровней тех или иных характеристик, применяемые при проектировании систем обеспечения безопасности функционирования экономических структур, технических устройств и объектов. Однако теоретических оснований для такого предположения нет. Необходимо экспериментально изучать распределения погрешностей.

Приведенные описания экспеpиментальных данных показывают, что погрешности измерений в большинстве случаев имеют распределения, отличные от нормальных. Это означает, в частности, что большинство применений критерия Стьюдента, классического регрессионного анализа и других статистических методов, основанных на нормальной теории, строго говоря, не является обоснованным, поскольку неверна лежащая в их основе аксиома нормальности распределений соответствующих случайных величин.

Очевидно, для оправдания или обоснованного изменения существующей практики анализа статистических данных требуется изучить свойства процедур анализа данных при "незаконном" применении. Изучение процедур отбраковки показало, что они крайне неустойчивы к отклонениям от нормальности, а потому применять их для обработки реальных данных нецелесообразно; поэтому нельзя утверждать, что произвольно взятая процедура устойчива к отклонениям от нормальности.

Иногда предлагают перед применением, например, критерия Стьюдента однородности двух выбоpок проверять нормальность. Хотя для этого имеется много критериев, но проверка нормальности - более сложная и трудоемкая статистическая процедура, чем проверка однородности (как с помощью статистик типа Стьюдента, так и с помощью непараметрических критериев). Для достаточно надежного установления нормальности требуется весьма большое число наблюдений. Так, чтобы гарантировать, что функция распределения результатов наблюдений отличается от некоторой нормальной не более чем на 0,01 (при любом значении аргумента), требуется порядка 2500 наблюдений. В большинстве экономических, технических, медико-биологических и других прикладных исследований число наблюдений существенно меньше. Особенно это справедливо для данных, используемых при изучении проблем, связанных с обеспечением безопасности функционирования экономических структур и технических объектов.

Иногда пытаются использовать ЦПТ для приближения распределения погрешности к нормальному, включая в технологическую схему измерительного прибора специальные сумматоры.

В обычно используемых сумматорах слагаемых значительно меньше. Сужая класс возможных распределений H, можно получить, как показано в монографии, более быструю сходимость, но теория здесь еще не смыкается с практикой. Кроме того, не ясно, обеспечивает ли близость распределения к нормальному (в определенной метрике) также и близость распределения статистики, построенной по случайным величинам с этим распределением, к распределению статистики, соответствующей нормальным результатам наблюдений. Видимо, для каждой конкретной статистики необходимы специальные теоретические исследования,

Отметим, что результат любого реального измерения записывается с помощью конечного числа десятичных знаков, обычно небольшого (2-5), так что любые реальные данные целесообразно моделировать лишь с помощью дискретных случайных величин, принимающих конечное число значений. Нормальное распределение - лишь аппроксимация реального распределения. Из принципа Дирихле следует, что в какой-то точке построенная по данным работы функция распределения отличается от ближайшей функции нормального распределения не менее чем на 1/26, т.е. на 0,04. Кроме того, очевидно, что для нормального распределения случайной величины вероятность попасть в дискретное множество десятичных чисел с заданным числом знаков после запятой равна 0.

Из сказанного выше следует, что результаты измерений и вообще статистические данные имеют свойства, приводящие к тому, что моделировать их следует случайными величинами с распределениями, более или менее отличными от нормальных. В большинстве случаев распределения существенно отличаются от нормальных, в других нормальные распределения могут, видимо, рассматриваться как некоторая аппроксимация, но никогда нет полного совпадения. Отсюда вытекает как необходимость изучения свойств классических статистических процедур в неклассических вероятностных моделях (подобно тому, как это сделано ниже для критерия Стьюдента), так и необходимость разработки устойчивых (учитывающих наличие отклонений от нормальности) и непараметрических, в том числе свободных от распределения процедур, их широкого внедрения в практику статистической обработки данных.

Опущенные здесь рассмотрения для других параметрических семейств приводят к аналогичным выводам. Итог можно сформулировать так. Распределения реальных данных практически никогда не входят в какое-либо конкретное параметрическое семейство. Реальные распределения всегда отличаются от тех, что включены в параметрические семейства. Отличия могут быть большие или маленькие, но они всегда есть. Попробуем понять, насколько важны эти различия для проведения эконометрического анализа.

При обработки реальных экономических данных, полученных в процессе наблюдений, измерений, расчетов, иногда один или несколько результатов наблюдений резко выделяются, т.е. далеко отстоят от основной массы данных. Такие резко выделяющиеся результаты наблюдений часто считают содержащими грубые погрешности, соответственно называют промахами или выбросами. В рассматриваемых случаях возникает естественная мысль о том, что подобные наблюдения не относятся к изучаемой совокупности, поскольку содержат грубую погрешность, а получены в результате ошибки, промаха. В метрологии об этом явлении говорят так: "Грубые погрешности и промахи возникают из-за ошибок или неправильных действий оператора (его психо-физиологического состояния, неверного отсчета, ошибок в записях или вычислениях, неправильного включения приборов и т.п.), а также при кратковременных резких изменений проведения измерений (вибрации, поступления холодного воздуха, толчка прибора оператором и т.п.). Если грубые погрешности и промахи обнаруживают в процессе измерений, то результаты, содержащие их, отбрасывают. Однако чаще всего их выявляют только при окончательной обработке результатов измерений с помощью специальных критериев оценки грубых погрешностей".

Есть два подхода к обработке данных, которые могут быть искажены грубыми погрешностями и промахами:

1) отбраковка резко выделяющихся результатов наблюдений, т.е. обнаружение наблюдений, искаженных грубыми погрешностями и промахами, и исключение их из дальнейшей статистической обработки;

2) применение устойчивых (робастных) методов обработки данных, На результаты, работы которых мало влияет наличие небольшого числа грубо искаженных наблюдений.

При втором из названных выше подходов к определению функции распределения ее конкретный вид выводится из некоторой системы аксиом, в частности, из некоторой модели порождения соответствующей случайной величины. Например, из модели суммирования вытекает нормальное распределение, а из мультипликативной модели перемножения - логарифмически нормальное распределение. Как правило, при выводе используется предельный переход. Так, из Центральной Предельной Теоремы теории вероятностей вытекает, что сумма независимых случайных величин может быть приближена нормальным распределением. Однако более детальный анализ, в частности, с помощью неравенства Берри-Эссеена показывает, что для гарантированного достижения точности необходимо более полутора тысяч слагаемых. Такого количества слагаемых реально, конечно, указать почти никогда нельзя. Это означает, что при решении практических эконометрических задач теория дает возможность лишь сформулировать гипотезу о виде функции распределения, а проверять ее надо с помощью анализа реальной выборки объема, как показано выше, не менее нескольких тысяч.

Таким образом, в большинстве реальных ситуаций определить функцию распределения с точностью невозможно.

Итак, показано, что правила отбраковки, основанные на использовании конкретной функции распределения, являются крайне неустойчивыми к отклонениям от нее распределения элементов выборки, а гарантировать отсутствие подобных отклонений невозможно. Поэтому отбраковка по классическим правилам математической статистики не является научно обоснованной, особенно при больших объемах выборок. Указанные правила целесообразно применять лишь для выявления "подозрительных" наблюдений, вопрос об отбраковке которых должен решаться из соображений соответствующей предметной области, а не из формально-математических соображений.

Аналогичные выводы о крайней неустойчивости правил отбраковки справедливы, если "истинное распределение" принадлежит какому-либо параметрическому семейству, например, нормальному, Вейбулла-Гнеденко, гамма.

Параметрическим методам отбраковки, основанным на моделях тех или иных параметрических семейств распределений, посвящены тысячи книг и статей. Приходится признать, что они имеют в основном внутриматематический интерес. При обработке реальных данных следует применять устойчивые методы, в частности, непараметрические.

Вероятностная модель порождения данных.Для обоснованного применения эконометрических методов необходимо, прежде всего, построить и обосновать вероятностную модель порождения данных. При проверке однородности двух выборок общепринята модель, в которой x1, x2,...,xm рассматриваются как результаты m независимых наблюдений некоторой случайной величины Х с функцией распределения F(x), неизвестной статистику, а y1, y2,...,yn - как результаты п независимых наблюдений, вообще говоря, другой случайной величины Y с функцией распределения G(x), также неизвестной статистику. Предполагается также, что наблюдения в одной выборке не зависят от наблюдений в другой, поэтому выборки и называют независимыми.

Возможность применения модели в конкретной реальной ситуации требует обоснования. Независимость и одинаковая распределенность результатов наблюдений, входящих в выборку, могут быть установлены или исходя из методики проведения конкретных наблюдений,или путем проверки статистических гипотез независимости и одинаковой распределенности с помощью соответствующих критериев.

Если проведено (т+п) измерений объемов продаж в (т+п) торговых точках, то описанную выше модель, как правило, можно применять. Если же, например, xi и yi - объемы продаж одного и того же товара до и после определенного рекламного воздействия, то рассматриваемую модель применять нельзя. (В этом случае используют модель т.н. связанных выборок, в которой обычно строят новую выборку zi = xi - yi и используют статистические методы анализа одной выборки, а не двух. Проверка однородности для связанных выборок рассматривается ниже.)

При дальнейшем изложении принимаем описанную выше вероятностную модель двух выборок.

Уточнения понятия однородности.Понятие «однородность», т. е. «отсутствие различия», может быть формализовано в терминах вероятностной модели различными способами.

Наивысшая степень однородности достигается, если обе выборки взяты из одной и той же генеральной совокупности, т. е. справедлива нулевая гипотеза

H0: F(x)=G(x) при всех х. (225)

Отсутствие однородности означает, что верна альтернативная гипотеза, согласно которой

H1: F(x0)¹G(x0) (226)

хотя бы при одном значении аргумента x0. Если гипотеза H0 принята, то выборки можно объединить в одну, если нет - то нельзя.

В некоторых случаях целесообразно проверять не совпадение функций распределения, а совпадение некоторых характеристик случайных величин Х и Y - математических ожиданий, медиан, дисперсий, коэффициентов вариации и др. Например, однородность математических ожиданий означает, что справедлива гипотеза

H'0: M(X)=M(Y), (227)

где M(Х) и M(Y) - математические ожидания случайных величин Х и Y, результаты наблюдений над которыми составляют первую и вторую выборки соответственно. Доказательство различия между выборками в рассматриваемом случае - это доказательство справедливости альтернативной гипотезы

H'1: M(X) ¹ M(Y). (228)

Если гипотеза H0 верна, то и гипотеза H'0 верна, но из справедливости H'0 не следует справедливость H0. В частности, если в результате обработки выборочных данных принята гипотеза H'0, то отсюда не следует, что две выборки можно объединить в одну. Однако в ряде ситуаций целесообразна проверка именно гипотезы H'0. Например, пусть функция спроса на определенный товар или услугу оценивается путем опроса потребителей (первая выборка) или с помощью данных о продажах (вторая выборка). Тогда маркетологу важно проверить гипотезу об отсутствии систематических расхождений результатов этих двух методов, т.е. гипотезу о равенстве математических ожиданий. Другой пример – из производственного менеджмента. Пусть изучается эффективность управления бригадами рабочих на предприятии с помощью двух организационных схем, результаты наблюдения - объем производства на одного члена бригады, а показатель эффективности организационной схемы - средний (по предприятию) объем производства на одного рабочего. Тогда для сравнения эффективности препаратов достаточно проверить гипотезу H'0.

Классические условия применимости критерия Стьюдента.Пусть выполнены два классических условия применимости критерия Стьюдента, основанного на использовании статистики t, заданной формулой (1):

а) результаты наблюдений имеют нормальные распределения:

F(x)=N(x; m1, s12), G(x)=N(x; m2, s22) (229)

с математическими ожиданиями m1 и m2 и дисперсиями s12 и s22 в первой и во второй выборках соответственно;

б) дисперсии результатов наблюдений в первой и второй выборках совпадают:

D(X)=s12=D(Y)=s22. (230)

Если условия а) и б) выполнены, то нормальные распределения F(x) и G(x) отличаются только математическими ожиданиями, а поэтому обе гипотезы H0 и H'0 сводятся к гипотезе

H"0: m1=m2,, (231)

а обе альтернативные гипотезы H1 и H'1 сводятся к гипотезе

H"1: m1¹m2,. (232)

Если условия а) и б) выполнены, то статистика t при справедливости H"0 имеет распределение Стьюдента с (т + п - 2) степенями свободы. Только в этом случае описанный выше традиционный метод обоснован безупречно. Если хотя бы одно из условий а) и б) не выполнено, то нет оснований считать, что статистика t имеет распределение Стьюдента, поэтому применение традиционного метода, строго говоря, не обосновано. Обсудим возможность проверки этих условий и последствия их нарушений.

О проверке условия нормальности. Априори нет оснований предполагать нормальность распределения результатов экономических, технико-экономических и иных наблюдений. Следовательно, нормальность надо проверять. Разработано много статистических критериев для проверки нормальности распределения результатов наблюдений. Однако проверка нормальности - более сложная и трудоемкая статистическая процедура, чем проверка однородности (как с помощью статистики t Стьюдента, так и с использованием непараметрических критериев, рассматриваемых ниже).

Для достаточно надежного установления нормальности требуется весьма большое число наблюдений. Выше показано, что для того, чтобы гарантировать, что функция распределения результатов наблюдений отличается от некоторой нормальной не более чем на 0,01 (при любом значении аргумента), требуется порядка 2500 наблюдений. В большинстве экономических и технико-экономических исследований число наблюдений существенно меньше.

Как уже отмечалось, есть и одна общая причина отклонений от нормальности: любой результат наблюдения записывается конечным (обычно 2-5) количеством цифр, а с математической точки зрения вероятность такого события равна 0. Из сказанного выше следует, что в эконометрике распределение результатов экономических и технико-экономических наблюдений практически всегда более или менее отличается от нормального. Более подробно это утверждение выше.

Последствия нарушения условия нормальности.Если условие а) не выполнено, то распределение статистики t не является распределением Стьюдента. Однако при справедливости H'0 и условии б) распределение статистики t при росте объемов выборок приближается к стандартному нормальному распределению Ф (х)=N(x; 0, 1). К этому же распределению приближается распределение Стьюдента при возрастании числа степеней свободы. Другими словами, несмотря на нарушение условия нормальности традиционный метод (критерий Стьюдента) можно использовать для проверки гипотезы H'0 при больших объемах выборок. При этом вместо таблиц распределения Стьюдента достаточно пользоваться таблицами стандартного нормального распределения Ф(х).

О проверке условия равенства дисперсий.Иногда условие вытекает из методики получения результатов наблюдений, например, когда с помощью одного и того же прибора или методики m раз измеряют характеристику первого объекта и п. раз-второго, а параметры распределения погрешностей измерения при этом не меняются. Однако ясно, что в постановках большинства исследовательских и практических задач нет основании априори предполагать равенство дисперсий.

Целесообразно ли проверять равенство дисперсий статистическими методами, например, как это иногда предлагают, с помощью F -критерия Фишера? Этот критерий основан на нормальности распределений результатов наблюдений, от которой неизбежны отклонения (см. выше), причем, хорошо известно, что в отличие от t -критерия его распределение сильно меняется при малых отклонениях от нормальности. Кроме того, F -критерий отвергает гипотезу D(X)=D(Y) лишь при большом различии выборочных дисперсий. Так, для данных о двух группах результатов химических анализов отношение выборочных дисперсий равно 1,95, т.е. существенно отличается от 1. Тем не менее, гипотеза о равенстве теоретических дисперсий принимается на 1% уровне значимости. Следовательно, при проверке однородности применение F -критерия для предварительной проверки равенства дисперсий нецелесообразно.

Итак, в большинстве экономических и технико-экономических задачусловие нельзя считать выполненным, а проверять его нецелесообразно.

Непараметрические методы проверки однородности.В большинстве экономических и технико-экономических задач представляет интерес не проверка равенства математических ожиданий или иных характеристик распределения, а обнаружение различия генеральных совокупностей, из которых извлечены выборки, т.е. проверка гипотезы H0. Методы проверки гипотезы H0 позволяют обнаружить не только изменение математического ожидания, но и любые иные изменения функции распределения результатов наблюдений при переходе от одной выборки к другой (увеличение разброса, появление асимметрии и т. д.). Как установлено выше, методы, основанные на использовании статистик t Стьюдента и Т Крамера-Уэлча, не позволяют проверять гипотезу H0. Априорное предположение о принадлежности функций распределения F(x) и G(x) к какому-либо определенному параметрическому семейству (например, семействам нормальных, логарифмически нормальных, распределений Вейбулла-Гнеденко, гамма-распределений и др.), как показано выше, обычно нельзя достаточно надежно обосновать. Поэтому для проверки H0 следует использовать методы, пригодные при любом виде F(x) и G(x), т.е. непараметрические методы. (Термин «непараметрический метод» означает, что при использовании этого метода нет необходимости предполагать, что функции распределения результатов наблюдений принадлежат какому-либо определенному параметрическому семейству.)

Для проверки гипотезы H0 разработано много непараметрических методов - критерии Смирнова, типа омега-квадрат (Лемана-Розенблатта), Вилкоксона (Манна-Уитни), Ван-дер-Вардена, Сэвиджа, хи-квадрат и других. Распределения статистик всех этих критериев при справедливости H0 не зависят от конкретного вида совпадающих функций распределения F(x)ºG(x). Следовательно, таблицами точных и предельных (при больших объемах выборок) распределений статистик этих критериев и их процентных точек можно пользоваться при любых непрерывных функциях распределения результатов наблюдений.

Каким из непараметрических критериев пользоваться?Как известно, для выбора одного из нескольких критериев необходимо сравнить их мощности, определяемые видом альтернативных гипотез. Сравнению мощностей критериев посвящена обширная литература.

Хорошо изучены свойства критериев при альтернативной гипотезе сдвига

H1c: G(x)=F(x-d), d¹0. (233)

Критерии Вилкоксона, Ван-дер-Вардена и ряд других ориентированы для применения именно в этой ситуации. Если m раз измеряют характеристику одного объекта и п раз - другого, а функция распределения погрешностей измерения произвольна, но не меняется при переходе от объекта к объекту (это более жесткое требование, чем условие равенства дисперсий), то рассмотрение гипотезы H1c оправдано. Однако в большинстве экономических и технико-экономических исследований нет оснований считать, что функции распределения, соответствующие выборкам, различаются только сдвигом.

Покажем (и это - основной результат настоящего пункта), что двухвыборочный критерий Вилкоксона (в литературе его называют также критерием Манна-Уитни) предназначен для проверки гипотезы

H0: P(X < Y) = 1/2, (234)

где X - случайная величина, распределенная как элементы первой выборки, а Y - второй.

В описанной выше вероятностной модели двух независимых выборок без ограничения общности можно считать, что объем первой из них не превосходит объема второй, m < n, в противном случае выборки можно поменять местами. Обычно предполагается, что функции F(x) и G(x) непрерывны и строго возрастают. Из непрерывности этих функций следует, что с вероятностью 1 все m + n результатов наблюдений различны. В реальных эконометрических данных иногда встречаются совпадения, но сам факт их наличия - свидетельство нарушений предпосылок только, что описанной базовой математической модели.

Статистика S двухвыборочного критерия Вилкоксона определяется следующим образом. Все элементы объединенной выборки X1, X2,..., Xm, Y1, Y2,..., Yn упорядочиваются в порядке возрастания. Элементы первой выборки X1, X2,..., Xm занимают в общем вариационном ряду места с номерами R1, R2,..., Rm, другими словами, имеют ранги R1, R2,..., Rm. Тогда статистика Вилкоксона - это сумма рангов элементов первой выборки

S = R1 + R2 +... + Rm. (235)

Статистика U Манна-Уитни определяется как число пар (Xi, Yj) таких, что Xi < Yj, среди всех mn пар, в которых первый элемент - из первой выборки, а второй - из второй. Как известно,

U = mn + m(m+1)/2 - S. (236)

Поскольку S и U линейно связаны, то часто говорят не о двух критериях - Вилкоксона и Манна-Уитни, а об одном - критерии Вилкоксона (Манна-Уитни).

Критерий Вилкоксона - один из самых известных инструментов непараметрической статистики (наряду со статистиками типа Колмогорова-Смирнова и коэффициентами ранговой корреляции). Свойствам этого критерия и таблицам его критических значений уделяется место во многих монографиях по математической и прикладной статистике.

Однако в литературе имеются и неточные утверждения относительно возможностей критерия Вилкоксона. Так, одни полагают, что с его помощью можно обнаружить любое различие между функциями распределения F(x) и G(x). По мнению других, этот критерий нацелен на проверку равенства медиан распределений, соответствующих выборкам.

Подведем итоги рассмотрения критерия Вилкоксона.

1. Критерий Вилкоксона (Манна-Уитни) является одним из самых распространенных непараметрических ранговых критериев, используемых для проверки однородности двух выборок. Его значение не меняется при любом монотонном преобразовании шкалы измерения (т.е. он пригоден для эконометрического анализа данных, измеренных в порядковой шкале).





Поделиться с друзьями:


Дата добавления: 2016-12-04; Мы поможем в написании ваших работ!; просмотров: 551 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2230 - | 1969 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.