Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Приклади розв’язування задач




 

1. Алгебра складається з усіх відображень множини {1,2} в себе: , , , . Операцією є композиція ○ відображень. Скласти таблицю Келі та дослідити властивості операції в цій алгебрі.

Розв‘язування. Таблиця Келі для операції ○ в заданій алгебрі має вигляд

 

а b c d
а a b a b
b a b b a
c a b c d
d a b d c

Як відомо композиція відображень є асоціативною, отже алгебра A = (X; ○} є півгрупою, де X = { a, b, c, d }. У півгрупі A є одиничний (нейтральний) елемент c, оскільки " x Î X, xc = cx = x. Отже, півгрупа A є моноїдом. Оскільки ab = b, а ba = a, то моноїд не є абелевим.

 

2. Перевірити, чи утворює групу множина R + операція T, якщо вона задається як a T b = a 2 b 4.

Розв‘язування. Для того, щоб алгебра була групою необхідно, щоб у алгебрі існував нейтральний елемент. Умовою існування нейтрального елемента e є " x Î R +, e T x = x T e = x. Нехай e 1 –лівий, а e 2 –правий нейтральний елементи. Тоді e 1 T x = e 12 x 4 = x, звідси e 1 = x –3/2. Разом з тим x T e 2 = x 2 e 24 = x і e 2 = x –1/4. Як бачимо e 2e 1. Таким чином, нейтрального елемента не існує, і тому задана алгебра не є групою.

 

3. Показати, що група додатних дійсних чисел відносно операції множення (R +; ×) ізоморфна групі дійсних чисел відносно операції додавання (R; +).

Розв‘язування. Для доведення ізоморфізму можна використати наступне бієктивне відображення ln: R + ® R, яке зберігає групові операції - ln (a × b) = ln (a) + ln (b).

 

4. Довести, що множина всіх чисел виду (a та b – цілі числа), які додаються та множаться як звичайні дійсні числа, є кільцем.

Розв‘язування. Справді, замкнутість цієї множини відносно операцій додавання та множення випливає зі співвідношень () + () = (a + b) + (c + d) та ()() = (ac + 3 bd) + (ad + bc) . Таким чином, наведені операції є дійсно бінарними операціями на заданій множині.

Перевіримо спочатку, що задана множина з операцією додавання є абелевою групою. Оскільки числа виду є частковим випадком дійсних чисел, то операція їх додавання є асоціативною й комутативною. Нейтральним елементом відносно додавання, очевидно, є елемент . Оберненим для елемента відносно операції додавання є елемент .

Числа виду є частковим випадком дійсних чисел. Тому й операція їх множення є асоціативною. Значить, вказана множина відносно заданої операції множення є півгрупою.

Як згадувалося раніше, операції множення та додавання на заданій множині є операціями над дійсними числами. Тому вказана операція множення є дистрибутивною відносно операції додавання.

Отже множина всіх чисел виду (a та b – цілі числа), які додаються та множаться як звичайні дійсні числа, є кільцем.

Зауважимо, що згадана множина не є полем, бо не існує нейтрального елемента відносно операції множення, як показують наступні міркування.

Нехай - нейтральний елемент відносно операції множення. Тоді повинна виконуватися рівність . З неї отримуємо, що . Як бачимо зліва стоїть ціле число, а справа – ірраціональне. Ми отримали суперечність.

 


Елементи теорії графів

 

Вступ

Теорія графів, як розділ дискретної математики, з успіхом використовується у задачах керування виробництвом і проектування мереж ЕОМ, при розробці сучасних електронних модулів і при проектуванні фізичних систем, при розробці сучасних електронних модулів і при проектуванні фізичних систем, при розв’язуванні задач генетики і вирішенні проблем автоматизованого управління (САПР). Теорія графів є основою математичного забезпечення сучасних систем обробки інформації у прикладній теорії алгоритмів та в інших галузях науки і техніки.

Далі будемо розглядати деякі елементи теорії графів, які мають загальну форму та можуть бути застосовані при дослідженні об’єктів та систем довільної природи.

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 380 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2289 - | 2025 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.