Ін’єктивні, сюр’єктивні та бієктивні відображення
Лекции.Орг

Поиск:


Ін’єктивні, сюр’єктивні та бієктивні відображення




Відображення f множини Х в множину Y називають ін’єктивним, чи ін’єкцією, якщо двом різним елементам з множини Х відповідають два різних елементи з множини Y (рис. 9а та 9в). Іншими словамиf : XY ін’єктивне, якщо для будь-яких xx1, x, x1 Î Х, f (x) ≠ f (x1).

Зауважимо, зокрема, що канонічна ін’єкція деякої підмножини в саму множину є ін’єктивним відображенням.

Відображення f називають сюр’єктивним, чи сюр’єкцією, якщо для кожного елемента y з множини Y існує принаймні один елемент x з множини X такий, що f(x)=y. (рис. 9б та 9в).

Відображення називають бієктивним, чи бієкцією, якщо воно одночасно ін’єктивнe та сюр’єктивнe. Відображення f є бієктивним, якщо кожен елемент із Y є образом при відображенні f деякого, і при тому єдиного, елемента з X (рис. 9в). Кажуть, що бієктивне відображення встановлює взаємно однозначну відповідність між множинами X та Y. Бієкція множини на себе називається також перестановкою чи перетворенням.

Рис. 9

Для скінченних множин Х та Y сюр’єктивнiсть відображення f : XY означає, що | Х | ≥ | Y |. Наприклад; f : {1, 2, 3, 4} → {y1, y2, y3}, f = - сюр’єктивне, a f = - не сюр’єктивнe.

Якщо Х і Y скінченні, то ін’єктивність відображення означає, що | Х | ≤ | Y |.

Наприклад, нехай Х = {l, 2, 3}, Y = {y1, y2, y3, y4}. Якщо f (1) = y1, f (2) = y2, f (3) = y3, то f : XY ін’єктивнe.

При скінченних X та Y бієктивнiсть відображення f : XY означає, що | X | = | Y |.

Наприклад, X = (1, 2, 3), Y = {y1, y2, y3}, відображення f = - бієктивне.

Композиція відображень

Нехай задано два відображення: f : XY та g: YZ. Тоді композицією відображень f і g (позначаємо символом gf) будемо називати відображення з множини X в множину Z, визначене виразом gf (x) = g(f (x)) для всіх елементів x з множини X. Прийняте правило, згідно з яким у композиції gf треба починати з відображення f, розташованого праворуч.

Наприклад, нехай маємо множини Х = {l, 2, 3, 4}, Y = {а, b, c}, Z = {u, v}та два відображення

f : ХY, , g : YZ,

Тоді композиція заданих відображень gf: ХZ,

Композиція відображень асоціативна, тобто якщо маємо три відображення f : XY, g: YZ, h: ZU, то (hg) ○ f = h ○ (gf) = hgf.

Відображення g: YX називається оберненим до відображення f : XY, якщо виконуються такі умови f -1f = IX (IX - тотожне відображення на множині X), ff -1 = IY (IY - тотожне відображення на множині Y).

Для відображення f існує обернене відображення f -1 тоді і тільки тоді, коли відображення f бієктивне. Обернене відображення f -1 також є бієктивним.

Якщо f :XY - бієкція й g: YZ - бієкція, то gf - бієкція з Х в Z, а її обернена бієкція дорівнює f -1g -1.

Наприклад, нехай задані множини Х ={l, 2, 3}, Y = {а, b, c} та відображення f : ХY, . Це відображення є бієктивним, і тому до нього існує обернене f -1: YX, . Дійсно, f -1f = = IX та ff -1 = = IY.

 


 

Відношення

Розглянемо декартовий добуток другого степеня множини Х: Х2 = Х ´ Х. Довільну підмножину R множини Х2 (R Í Х2) будемо називати бінарним відношенням (або просто відношенням), заданим на множині Х. Вважатимемо, що впорядковані елементи x, х' Î Х знаходяться між собою у відношенні R, коли (x, х') Î R. Якщо на Х задано відношення R Í X 2, то запис x R х' означає, що x і х' знаходяться у відношенні R, тобто(x, х') Î R.

Розглянемо кілька прикладів відношень:

1) на множині N відношення £ . Ясно, що впорядковані пари (3, 7) і (5, 5) належать цьому відношенню, а пара (4, 1) не належить;

2) на множині Р(Х) всіх підмножин множини Х = {1, 3, 5, 7, 9} відношення Í. Пари підмножин ({1, 3}, {1, 3, 9}) і ({5, 7, 9}, {5, 7, 9}) належать цьому відношенню, а пара підмножин ({1, 5, 7}, {3, 5, 9}) не належить.

Відношення R на множині X називається:

1) рефлективним, якщо довільний елемент множини знаходиться у відношенні сам з собою, тобто для будь-якого х Î Х виконується х R х. Прикладами рефлективних відношень можуть бути ≤, ≥, = на множині натуральних чисел;

2) антирефлективним, якщо для будь-якого х Î Х пара (х, х) не належить до відношення R. Прикладами антирефлективних відношень можуть бути <, >, ≠ на множині раціональних чисел;

3) симетричним, якщо для довільних x, х' Î Х з того, що x R х' випливає х' R x;

4) антисиметричним, якщо для довільних x, х' Î Х з того, що x R х' і х' R x, випливає x = х' (наприклад, £ на N, тому що з x £ х' і х' £ x випливає х= х');

5) транзитивним, якщо для довільних x, х', х'' Î Х з того, що x R х' і х' R х'', випливає x R х'' (наприклад, відношення Í на множині Р(Х) чи відношення £ на множині N).

Наведемо деякі приклади відношень:

1) R = {(x, х') | x, х' Î Q, | x - х' | £ 2007}

Відношення рефлективне, бо для будь-якого xÎQвиконується нерівність | x - х | £ 2007

Відношення не є антирефлективним, бо скажімо для елемента x=5ÎQ нерівність | x - х | £ 2007 виконується.

Відношення є симетричним, бо для довільних x, х' Î Q, з нерівності | x - х' | £ 2007 випливає нерівність | x' - х | £ 2007

Відношення не є антисиметричним, бо для різних елементів x=7 та x'=5 з множини Q одночасно виконуються нерівності | x - х' | £ 2007 та | x' - х | £ 2007

Відношення не є транзитивним, бо для елементів x=2010, x'=1 та x''=10 з множини Q нерівності | x - х' | £ 2007 та | x' - x'' | £ 2007 виконуються, а нерівність | x - х'' | £ 2007 не виконується.

2) R = {(x, y) | x, y Î С, якщо |x| £ |y| £ |y2|}

 

Розглянемо далі відношення, які мають особливе значення.





Дата добавления: 2016-11-24; просмотров: 901 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.004 с.